A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

Size: px
Start display at page:

Download "A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ"

Transcription

1 A S hr/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k= ϵ-n n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1) ϵ n > N(ϵ) n α < ϵ (1.1.2) N(ϵ) ( ϵ > 0 N(ϵ) n > N(ϵ) = n α ) < ϵ (1.1.3)

2 A S hr/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ϵ) N ϵ ϵ- (1.1.3) n > N(ϵ) n α < ϵ n N(ϵ) n α ϵ N(ϵ) N(ϵ) N(ϵ) ϵ N ϵ N ϵ lim n n = n n n lim n n = + M N(M) n > N(M) n > M (1.1.4) lim n = + lim n = { n } n n n n N n N N N N = 10 4 N = N = N n

3 A S hr/lectures/lectures-j.html 3 n = 1/n n n n ϵ > 0 n n α ϵ ϵ ϵ ϵ = 10 6 ϵ = ϵ = N ϵ n α N ϵ 3 n α n α n n = 1/n ϵ = n > 100 n > 100 n α < ϵ = 10 6 n > n > n α < 10 6 ϵ = n > ϵ = n > ϵ > 0 lim n n = α ϵ = N lim n n = α N ϵ ϵ-n N ϵ n n α n n α ϵ n α N n ϵ n α ϵ-n ϵ N(ϵ) ϵ N n = 1, 2, 3,... n = 1 n, b n = 1 log(2 + log(2 + log n)), c 1 n = log(2 + log(2 + log n)) (1.1.5) n n n b n c n n b n c n b n c n n n n 1/n b n log n 3

4 A S hr/lectures/lectures-j.html 4 c n 10 8 n n n N ϵ n α ϵ ϵ n n n α ϵ ϵ-n n N(ϵ) n = 1, 2, 3,... n = 3, b n = 1 n, c n = 1, d n = 1 n n n 10, 10 2, 10 3, 10 4, 10 5, 10 6,... e n = 0 (1.1.6) (1.1.7) (1.1.5) n f n = n + 3 n, g n = sin n n, h n = n + 1 n, p n = 2n + 1 n + 1, q 1 n = log(n + 1) (1.1.8) ϵ-n ϵ-n lim n = α, lim b n = β lim ( n + b n ) = α + β. n n n lim n = α, lim b n = β lim nb n = αβ. n n n lim n = α, lim b n n = β β 0 lim = α n n n b n β. b n m b m = 0 {b n } n = n n n lim n = α lim n = β n n α = β ϵ-n n b n = 1 n n k=1 k lim n n = α lim n b n = α

5 A S hr/lectures/lectures-j.html 5 ϵ-n lim n n = α = lim = α n n n 1 n ρ 1, ρ 2, ρ 3,... ( n ) / ( n ) b n := ρ j j ρ j j=1 lim n = α lim b n = α ρ 1, ρ 2, ρ 3,... n n ρ 1 = ρ 2 = ρ 3 =... = 1 j=1 1.2 ϵ-δ 4 n n x x f(x) f(x), b f(x) x b lim x f(x) = b ϵ δ(ϵ) 0 < x < δ(ϵ) x f(x) b < ϵ (1.2.1) ( ϵ > 0 δ(ϵ) > 0 0 < x < δ(ϵ) = f(x) b ) < ϵ (1.2.2) x > 0 x = f(x) f() b f() = b x δ(ε 2 ) b ε 2 ε 2 ε 1 ε 1 x δ(ε 1 ) 4 2.1

6 A S hr/lectures/lectures-j.html 6 ϵ-n 0 < x < δ(ϵ) f(x) b < ϵ 0 < x δ(ϵ) f(x) b ϵ 0 < x ϵ-n ϵ, δ ϵ, δ x f(x) b ϵ-n ϵ δ ϵ-n α f(x) b < ϵ δ(ϵ) δ(ϵ) 1) lim x 0 x, > 0 ( 2) lim x 2 2x + 3 x 0 1 x 2 1 4) lim, 5) lim x x x 1 x 1, x 3 3 7) lim x x 8) lim x 0 ) ( ), 3) lim x 2 2x + 3. (1.2.3) x x 1 x x 6) lim sin 1 x 0 x, (1.2.4) 9) lim x 0 x (1.2.5) f(x) lim f(x) x 0 ϵ-δ x = 10 1, 10 2, 10 3, 10 4,... f(x) := x { } { } lim f(x) = α lim g(x) = β lim f(x) + g(x) = α + β lim f(x)g(x) = αβ x x x x ϵ-δ ( ) 1, 2, 3,... { n } 5 2.2

7 A S hr/lectures/lectures-j.html 7 { n } { n } 1, 2, 3, 4, 5, 6,... 1, 3, 5, 7, 9,... 1, 4, 9, 16, 25,... 1, 2, 5, 10, 100, 10032, , ( ) { n } L n n < L K n n > K K, L { n } n n L n K ( ) { n } {b n } {b n } 1, 2, 3,... K L ccumultion point K L n 2 n (1.3.1) 1 = 1.4, 2 = 1.41, 3 = 1.414,... 2 II

8 A S hr/lectures/lectures-j.html lim n = α n n α ( ) ϵ > 0 N(ϵ) n > N(ϵ) n α < ϵ (1.4.1) α e ( e = lim n (1.4.2) n n) ( ) n... n (monotone) incresing (monotone) decresing (monotone) non-decresing (monotone) non-incresing. strictly incresing n n 6 p.55

9 A S hr/lectures/lectures-j.html ( 2.2.4) { n } lim n n { n } lim n n { n } lim n = + { n } n lim n = n + ± lim n n n 2 n n 2 n p ϵ-δ f(x) lim x f(x) = f() ϵ δ(ϵ) x < δ(ϵ) x f(x) f() < ϵ (1.5.1) ϵ > 0, δ(ϵ) > 0, ( x < δ(ϵ) = ) f(x) f() < ϵ (1.5.2) 0 < x < δ(ϵ) x < δ(ϵ) 0 < lim x f(x) f() x 0 <

10 A S hr/lectures/lectures-j.html f(x) f(x) lim f(x) = x +0 f() f(x) lim f(x) = f() x 0 right continuous, left continuous continuous to the right, continuous to the left. f(x) [, b] c (, b) lim f(x) = f(c) lim f(x) = f(), lim x c x +0 f(x) = f(b) (1.5.3) x b 0 f() lim x f(x) f(x) = x x f(x) x = x = ϵ-δ ( p.49) f(x) x = f δ > 0 x < δ x f(x) < f() + 1 (1.5.4) f() > 0 f(x) > 0 δ > 0 x < δ x f(x) > f() 2 f() < 0 (1.5.5) ( p.50) f g b = f() h(x) = g(f(x)) ( p.50) f, g (1) f(x) + g(x) f(x) g(x) (2) f(x)g(x) (3) g() 0 f(x)/g(x)

11 A S hr/lectures/lectures-j.html ( 2.2.6) [, b] f(x) f() f(b) F f(c) = F c [, b] x b f(x) f() f(b) f(x) = x 2 2 f(x) = 0 x x = ± 2 x x x = ( 2.2.8) f(x) = 1/x (0, 1) g(x) = x (0, 1) g(x) = sin x x sin x 1.6 x α α x > 0 x α α n x α = lim n x n (1.6.1) x α α lim n n = α {n}

12 A S hr/lectures/lectures-j.html ( ) x = f(x) f(x) f() lim x x (2.1.1) f(x) x = derivtive f () df () dx f(x) differentible f I f I f () f () f derived function derivtive x x 0 (2.1.1) x ( ) f () := f(x) f() lim x 0 x (2.1.2) f(x) left derivtive f +() := f(x) f() lim x +0 x (2.1.3) f(x) right derivtive f f () f () = f + () f f () = f () = f + () 8 2.3

13 A S hr/lectures/lectures-j.html f(x) x = f p.129 Weierstrss ( Rolle 2.3.9) f(x) [, b] (, b) f() = f(b) ξ f (ξ) = 0 ( < ξ < b) (2.2.1) ξ, b f(x) f (x) = 0 f(x) f(x) (, b) 10 f(x) ξ f ξ (, b) ξ ξ f(ξ) f(x) ξ f (ξ) = lim h 0 f(ξ + h) f(ξ) h (2.2.2) h h > 0 h < 0 h 0 h ξ b x ξ b x

14 A S hr/lectures/lectures-j.html 14 Lgrnge ( ) f(x) [, b] (, b) ξ f(b) f() b = f (ξ) ( < ξ < b) (2.2.3) ξ, b g(x) = f(x) f() x b {f(b) f()} 0 = g (ξ) = f (ξ) 1 b {f(b) f()} < ξ < b ( p.64 3) f(x) g(x) [, b] (, b) (, b) g (x) 0 f(b) f() g(b) g() = f (ξ) g (ξ) ( < ξ < b) (2.2.4) ξ g (x) 0 g() g(b) f(b) f() k := F (x) := f(x) f() k{g(x) g()} F () = F (b) = 0 g(b) g() F f, g F (ξ) = 0 ξ f (ξ) kg (ξ) = ( ) I f x, y I x < y f(x) < f(y) f I x, y I x < y f(x) f(y) f I x, y I x < y f(x) > f(y) f I x, y I x < y f(x) f(y) f I

15 A S hr/lectures/lectures-j.html ( ) f(x) I = (, b) I f (x) 0 = I f(x) I f (x) > 0 = I f(x) I f (x) = 0 I f(x) I f (x) > 0 f () > 0 x = p.135 f (x) > 0 f (x) < 0 f(x) = x f(x) n- n- n th derivtive f (n) (x) f (x), f (x), f (x) f (2) (x) = d2 dx 2 f(x) = d { d } dx dx f(x), f (3) (x) = d3 dx 3 f(x) = d [ d { d }] f(x), dx dx dx... (2.3.1) f (0) (x) f(x) Leibniz d { f(x)g(x)} = f (x)g(x) + f(x)g (x), dx n d n dx n { f(x)g(x)} = n k=0 d 2 dx 2 { f(x)g(x)} = f (x)g(x) + 2f (x)g (x) + f(x)g (x) (2.3.2) ( ) n f (k) (x) g (n k) (x), k ( ) n n! := n C k = k k! (n k)! (2.3.3) 12 ( ) ( ) ( ) n n 1 n 1 = + (2.3.4) k k k 1 I f(x) n f (n) (x) I C n - m < n C n - C m ( 12 ( + b) n n = n ) ( k=0 k k b n k n k)

16 A S hr/lectures/lectures-j.html x = f(x) locl mximum r > 0, 0 < x < r = f(x) < f() (2.3.5) f x = x = f(x) locl minimum r > 0, 0 < x < r = f(x) > f() (2.3.6) r > 0, x < r = f(x) f() (2.3.7) f f(x) x = mximum f f() f x f(x) < f() (2.3.8) x minimum locl globl p x = f(x) (i) f(x) x = x = f(x) f () = 0 (ii) f(x) x = f () = 0. f () > 0 f(x) x = b. f () < 0 f(x) x = c. f () = 0 f(x) x = (ii)-c f (x) x f(x) y = f(x) f (x) f (x) y = f(x) f (x) > 0 x f (x) < 0 x

17 A S hr/lectures/lectures-j.html 17 f f convex function concve function f(x) f() f(x) = f() + n=1 f (n) () (x ) n (2.4.1) n! = 0 e x = 1 + x + x2 2 + x3 3! + x4 4! + = 1 n! xn (2.4.2) n=0 sin x = x x3 3! + x5 5! x7 7! + = ( 1) n (2n + 1)! x2n+1 (2.4.3) n=0 cos x = 1 x2 2! + x4 4! x6 6! + = n=0 ( 1) n (2n)! x2n (2.4.4) sin x cos x sin x cos x 2π sin π = 0 sin x cos x (2.4.2) e x, sin x 14 (2.4.1) x f(x) f() ( ) f(x) I n I e x, sin x (2.4.2)

18 A S hr/lectures/lectures-j.html 18 x I x ξ n 1 f(x) = f() + (2.4.5) n 1 S n (x) := f() + k=1 k=1 f (k) () k! (x ) k + f (n) (ξ) (x ) n (2.4.5) n! f(x) = S n (x) + R n (x), (2.4.6) f (k) () k! (x ) k, R n (x) := f (n) (ξ) (x ) n (2.4.7) n! S n (x) n R n (x) n f(x) x = = 3 f(x) x = 3 x =... x =... x =... x = 2 x = 2 = 0 Mclurin y = x x x = y y = 0 y x x = ξ x b R n (x) x, R n (x) ξ x, f (n) (x) ξ ξ [ n 1 F (x) := f(x) f() + F (x) (2.4.6) R n (x) k=1 f (k) () (x ) ], k G(x) := (x ) n (2.4.8) k! F, G F (x) f(x) (x ) k G(x) n F () = F () = F () =... = F (n 1) () = 0, F (n) () = f (n) () (2.4.9) G() = G () = G () =... = G (n 1) () = 0, G (n) () = n! (2.4.10) F (x) F () G(x) G() = F (ξ 1 ) G (ξ 1 ) ξ 1 ξ 1 x (2.4.11) 15

19 A S hr/lectures/lectures-j.html 19 F () = G () = F (ξ 1 ) G (ξ 1 ) = F (ξ 1 ) F () G (ξ 1 ) G () = F (ξ 2 ) G (ξ 2 ) (2.4.12) ξ 2 ξ 2 ξ 1 F (k) () = G (k) () = 0 k n 1 F (k) (ξ k ) G (k) (ξ k ) = F (k) (ξ k ) F (k) () G (k) (ξ k ) G (k) () = F (k+1) (ξ k+1 ) G (k+1) (ξ k+1 ) ξ k+1 ξ k+1 ξ k k n 1 F (x) F () G(x) G() = F (n) (ξ n ) G (n) (ξ n ) ξ n ξ n x F (x) (x ) n = f (n) (ξ n ) n! (2.4.13) (2.4.14) (2.4.15) (2.4.6) n 1 R n (x) n lim n R n(x) = 0 f(x) = lim n S n(x) = k=0 f (k) () (x ) k (2.4.16) k! lim n S n R n (2.4.6) n R n S n n f(x) R n (x) n f I f(x) = c n (x ) n + c n 1 (x ) n c 1 (x ) + c 0 f(x) = e x e x = 0 e x = n 1 k=0 x k k! + R n(x), R n (x) := eξ n! xn (2.4.17)

20 A S hr/lectures/lectures-j.html 20 ξ 0 x x lim n R n(x) = 0 x e x = k=0 x k k! (2.4.18) sin, cos sin x = S n (x) + R n (x), S n (x), R n (x) (2.4.19) x lim n R n(x) = 0 x sin x = ( 1) k x 2k+1 (2k + 1)! cos x = k=0 k=0 ( 1) k x2k (2k)! (2.4.20) 16 sin x n = 1, 2,..., 8 y = S n (x) y = sin x n n n = 11, 21, 31, 41 n = 10, 20, 30, 40 y = sin x n x 2 n=1 n= n= sin x 1 sin x x x n= n=

21 A S hr/lectures/lectures-j.html f(x) (x ) k S n (x) (2.4.6) S n (x) f(x) R n (x) f(x) = 1/(1 x) (n ) x = 0 f(x), g(x) x 0 f(x) g(x) lim x 0 x n = 0 n (2.4.21) 0 g(x) f(x) n n f(x) g(x) x n ( 2.3.5) lim f(x) = lim h(x) = 0 x x lim x f(x) h(x) = 0 f(x) h(x) f(x) = o( h(x) ) o f(x) x h(x) K > 0 δ > 0 ( 0 < x < δ = f(x) ) < K h(x) f(x) h(x) f(x) = O ( h(x) ) O (2.4.22) x f(x) g(x) f(x) g(x) f(x) g(x) f(x) g(x) f(x) = Ω ( g(x) ) (2.4.21) f(x) g(x) = o(x n ) n o (2.4.23) 17

22 A S hr/lectures/lectures-j.html ( ) f(x) x = 0 n f(x) = S n (x) + R n (x), S n (x) := n 1 k=0 f (k) (0) x k, k! R n (x) := f (n) (θx) x n (0 < θ < 1) (2.4.24) n! S n (x) f(x) (n 1) f(x) = n 1 k=0 f (k) (0) x k + o(x n 1 ) (2.4.25) k! lim x 0 R n (x) = 0 (2.4.26) xn 1 (2.4.26) ( ) 1) 0 f (n) δ > 0 M > 0 n x x < δ f (n) (x) < M (2.4.27) f(x) = n 1 k=0 f (k) (0) x k + O(x n ) (2.4.28) k! 2) 0 f (n) f(x) C n - 1) C S n ( )) f(x) g(x) = n j=0 jx j g(x) f(x) n g(x) 0, 1,..., n j f n g n g 1 (x) = j x j, g 2 (x) = j=0 j = b j 0 j n x 0 x 0 g 1 (x) g 2 (x) x n g 1(x) f(x) x n n b j x j (2.4.29) j=0 + f(x) g 2(x) x n (2.4.30) g 1 (x) g 2 (x) lim x 0 x k = 0 (0 k n) (2.4.31)

23 A S hr/lectures/lectures-j.html 23 g 1 (x) g 2 (x) = n ( j b j )x j (2.4.32) k = 0, 1, 2,... (2.4.31) k b k = 0 k = 0, 1, 2,... j=0 f(x) S n f(x) (n 1) 1/(1 3x) tn x x = 0 tn x = sin x cos x p (x ) n 2. x x Euler e iθ = cos θ + i sin θ, θ R (2.4.33) x = iθ e iθ (ix) k = k! k=0 = l=0 ( 1) l x2l (2l)! + i ( 1) l x 2l+1 (2l + 1)! l=0 (2.4.34) k i k cos θ + i sin θ sin, cos 2π e +b = e e b

24 A S hr/lectures/lectures-j.html ( 2.5.8) f(x) I C n - I I x I f(x) = S n (x) + R n (x), S n (x) := n 1 k=0 f (k) () x (x ) k, R n (x) := k! f (n) (y) (n 1)! (x y)n 1 dy (2.4.35) f(x) C N - (2.4.35) n N n I. n = 1 x f (y)dy = f(x) f() f() f (0) (x) := f(x) I. n = 2 n = 1 x f (y)dy = x f(x) = f() + { d dy (x y)} f (y)dy = = (x )f () + x x f (y)dy (2.4.36) [ ] x (x y)f (y) + x (x y)f (y)dy (x y)f (y)dy (2.4.37) II. n n + 1 n N 1 n (2.4.35) (n 1)! x x { f (n) (y)(x y) n 1 dy = f (n) (y) 1 d n dy (x y)n} dy = 1 [ ] x f (n) (y) (x y) n + 1 x f (n+1) (y) (x y) n dy n n = 1 n f (n) () (x ) n + 1 n x f (n+1) (y) (x y) n dy. (2.4.38) (2.4.35) (n 1)! (2.4.35) n + 1

25 A S hr/lectures/lectures-j.html 25 3 f f = e x2 F F 3.1 f(x) 18 f(x) f(x) > 0 < b f(x)dx [, b] y = f(x) x ( ) < b [, b] f(x) f(x)dx [, b] n n = x 0 < x 1 < x 2 <... < x n 1 < x n = b [, b] P [x i 1, x i ] i = 1, 2,..., n P P = mx 1 i n (x i x i 1 ) [x i 1, x i ] ζ i i = 1, 2,..., n ζ 1, ζ 2,..., ζ n ζ P ζ f R(f; P, ζ) = n f(ζ i ) (x i x i 1 ) (3.1.1) i=1 P 0 P P ζ P 0 R(f; P, ζ) P, ζ f(x) [, b] f(x)dx f(x)dx lim P 0 R(f; P, ζ) (3.1.2) 18 f(x) F (x) 19

26 A S hr/lectures/lectures-j.html 26 = b > b b f(x)dx = 0 f(x)dx = b f(x)dx > b b f(x)dx f(x) > 0 n = 5 R(f; P, ζ) y=f(x) x ζ 0 1 x ζ 1 2 x ζ 2 3 x ζ 3 4 x ζ 4 5 x 5 x f(x) x = lim f(x) = f() f(x) [.b] x [, b] c lim f(x) = f(c) ϵ δ x c c [, b] ϵ > 0 δ(ϵ, c) > 0 x c < δ(ϵ, c) = f(x) f(c) < ϵ (3.2.1) 20

27 A S hr/lectures/lectures-j.html 27 δ ϵ c c c 0 δ(ϵ, c) f(x) [, b] δ(ϵ, c) c [, b] c δ(ϵ) f(x) [, b] I ( 3.1.2) f(x) I c [, b] δ(ϵ) > 0 ( ) c I x c < δ(ϵ) = f(x) f(c) < ϵ (3.2.2) δ(ϵ) c ( 3.1.4) < b [, b] ϵ > 0 δ(ϵ) > 0 ( ) x, y [, b] x y < δ(ϵ) = f(x) f(y) < ϵ (3.2.3) δ(ϵ) x, y [, b] ( 3.1.8) A N A N A bounded from bove N A upper bound M A M A bounded from below M A lower bound A bounded A [0, 1] A A A A ( ) A A A A supremum sup A A A A infimum inf A

28 A S hr/lectures/lectures-j.html 28 A A A inf A sup A A A ( ) S S [ ] [ ] S S [ ] (3.1.2) Dirichlet 0 x 1 f(x) = f(x)dx (3.3.1) 1 x Lebesgue Drboux f [, b] f(x) f(x) [, b]?? P [x i 1, x i ] f(x) m i (f; P ), M i (f; P ) n s(f; P ) m i (f; P ) (x i x i 1 ), i=1 n S(f; P ) M i (f; P ) (x i x i 1 ) (3.3.2) i=1 s(f; P ) S(f; P ) P s(f) = sup{s(f; P ) P [, b] }, S(f) = inf{s(f; P ) P [, b] } (3.3.3) s(f) S(f)

29 A S hr/lectures/lectures-j.html 29 n = 5 x 0 x 1 x 2 x 3 x 4 x 5 x ζ s(f; P ) R(f; P, ζ) S(f; P ) (3.3.4) s(f; P ) S(f; P ) (Drboux ) P P 0 (3.3.3) s S s(f) = S(f) lim s(f; P ) = s(f), lim S(f; P ) = S(f) (3.3.5) P 0 P 0 P s(f; P ) S(f; P ) s(f) S(f) (3.3.6) f [, b] ( ) f [, b] s(f) = S(f) f f(x)dx = s(f) = S(f) (3.3.7) ( 3.2.3) f(x) [, b] f [, b]

30 A S hr/lectures/lectures-j.html 30 [ 1, 1] f(x) = x 2, x S(f; P ) [, b] P 1, P 2 P 12 = P 1 P 2 S(f; P 12 ) S(f; P 1 ) S(f; P 12 ) S(f; P 2 ) s(f; P ) S(f; P ) x 0 x 1 x 2 x 3 x 4 x 5 x x 0 x 1 x 2 y 1 x 3 x y 4 2 x 5 P 1 P 1 P 2 x P 1 = (x 0, x 1, x 2, x 3, x 4, x 5 ) S(f; P 1 ) P 2 = (y 0, y 1, y 2, y 3 ) y 0 =, y 3 = b P 1 P 2 S(f; P 1 P 2 ) S(f; P 1 P 2 ) S(f; P ) s(f; P ) S s S(f; P ) P S(f; P ) P inf S(f) P S(f) S(f; P ) P S(f) S(f; P ). (3.3.8) S(f) S(f; P ) inf S(f) S(f; P ) P ϵ > 0, P S(f; P ) S(f) + ϵ. (3.3.9) (3.3.9) P 0 P ( ) (??) ϵ > 0 δ > 0, P < δ = S(f; P ) S(f) + ϵ (3.3.10)

31 A S hr/lectures/lectures-j.html 31 (3.3.9) P P P P P P P P P, P S S(f; P P ) S(f; P ). (3.3.11) n P M, m [, b] f S(f; P ) S(f; P P ) n(m m) P (3.3.12) P P n (M m) P (3.3.11) (3.3.12) S(f; P ) S(f; P P ) + n(m m) P S(f; P ) + n(m m) P (3.3.13) (3.3.9) S(f; P ) S(f; P ) + n(m m) P S(f) + ϵ + n(m m) P (3.3.14) P n(m m) P < ϵ n P P ϵ > 0 δ > 0 P < δ = S(f; P ) S(f) + 2ϵ (3.3.15) ϵ 2ϵ ϵ (3.3.10) Drboux ϵ > 0 δ > 0 P < δ S(f; P ) < S(f) + ϵ s(f; P ) > s(f) ϵ (3.3.16) (3.3.15) s(f; P ) R(f; P, ζ) S(f; P ) (3.3.17) P < δ ζ s(f) ϵ s(f; P ) R(f; P, ζ) S(f; P ) S(f) + ϵ (3.3.18) s(f) = S(f) δ 0 ϵ 0 lim R(f; P, ζ) = s(f) = S(f) (3.3.19) P 0 S(f) s(f) = c > 0 sup, inf s(f; P ) s(f) = S(f) c S(f; P ) c (3.3.20) P, P S(f; P ) s(f; P )

32 A S hr/lectures/lectures-j.html s(f) = S(f) ϵ > 0 0 S(f; P ) s(f; P ) < ϵ P (3.3.21) ϵ > 0 δ > 0 ( ) P < δ = 0 S(f; P ) s(f; P ) < ϵ (3.3.22) b ϵ = ϵ f δ > 0 b x y < δ = f(x) f(y) < ϵ (3.3.23) P P < δ I i = [x i 1, x i ] x, y x y < δ f(x) f(y) < ϵ I i f M i m i 0 M i m i ϵ i 0 S(f; P ) s(f; P ) = i (M i m i )(x i x i 1 ) i ϵ (x i x i 1 ) = ϵ b = ϵ (3.3.24) (3.3.22) f(x)dx = 0, b = 1, f(x) = x (3.3.25) f(x) f(x) = sin 3.3.3

33 A S hr/lectures/lectures-j.html b f(x) = 0 < b f(x)dx f(x)dx = b ( ) (i) < c < b c f(x)dx + f(x)dx = c f(x)dx f(x)dx (3.4.1) (ii) (3.4.1), b, c (i) f(x) 0 [, b] c [, c] [c, b] (ii) (i) ( ) (i) f(x)dx, g(x)dx { } b f(x) ± g(x) dx = f(x)dx ± (ii) f(x)dx α g(x)dx (3.4.2) { } b αf(x) dx = α f(x)dx (3.4.3) f f(x)dx (3.4.4) (i), (ii) (i), (ii)

34 A S hr/lectures/lectures-j.html < b (i) (ii) [, b] f(x) 0 = [, b] f(x) g(x) = f(x)dx 0 (3.4.5) f(x)dx g(x)dx (3.4.6) (iii) [, b] f(x) f(x) f(x)dx > 0 (i) f(x) 0 (ii) h(x) = g(x) f(x) (i) (iii) c b c f(c) > 0 f(x) f(x) x = c δ > 0 x c < δ x b f(x) f(c) 2 (3.4.7) c δ c + δ b c ± δ f(x)dx = c δ f(x)dx + c+δ c δ f(x)dx + f(x)dx (3.4.8) c+δ f(x) 0 (3.4.7) c+δ c δ f(x)dx (3.4.8) c+δ c δ f(c) f(c) dx = 2δ = f(c) δ > 0 (3.4.9) < b f(x)dx f(x) dx. (3.4.10) f(x) f(x) f(x) (3.4.11) b (ii) (3.4.10) f(x) dx f(x)dx f(x) dx (3.4.12)

35 A S hr/lectures/lectures-j.html ( 3.3.6) < b [, b] f(x) g(x) 0 [, b] ξ f(x)g(x)dx = f(ξ) g(x)dx (3.4.13) g(x) 1 ξ f(x)dx = f(ξ) (b ) (3.4.14) [, b] M, m g(x) 0 [, b] mg(x) f(x)g(x) Mg(x) m g(x)dx mg(x)dx f(x)g(x) dx Mg(x)dx = M g(x)dx (3.4.15) (3.4.13) f(x)dx = 0 (3.4.13) (3.4.13) g(x)dx 0 g(x) 0 g(x)dx > 0 (3.4.15) g(x)dx m f(x)g(x)dx g(x)dx M (3.4.16) m, M [, b] f(x) f(x) x b f(x) m M f(x)g(x)dx g(x)dx = f(ξ) (3.4.17) ξ [, b] (3.4.13) f(ξ) = 1 b f(x)dx, f(ξ) = f(x)g(x)dx g(x)dx (3.4.18) f(x) [, b] f(x) g(x) ( 3.3.5) I f(x) I F (y) := y F I y F (y) f(x)dx (3.4.19) d F (y) = f(y). (3.4.20) dy F (y) d F (y + h) F (y) 1 F (y) = lim = lim dy h 0 h h 0 h y+h y f(x)dx (3.4.21)

36 A S hr/lectures/lectures-j.html 36 h +0 h 0?? [y, y + h] ξ hf(ξ) d F (y + h) F (y) F (y) = lim = lim f(ξ) (3.4.22) dy h 0 h h 0 ξ y y + h h 0 ξ y f f(ξ) f(y) f(y) f(x) f(x) F (x) f(x) < b [, b] f(x) f F (x) (i) F 1 (x) f(x) C F 2 (x) := F 1 (x) + C (3.4.23) F 2 (x) f(x) (ii) F 1 (x) F 2 (x) f(x) x C F 2 (x) F 1 (x) = C ( x b) (3.4.24) (i) F 1 = f F 2 = f (ii) F 1, F 2 f d dx {F 2(x) F 1 (x)} = f(x) f(x) = 0 (3.4.19) c ( ) [α, β] C 1 - ϕ(t) ϕ(α) =, ϕ(β) = b b α < t < β ϕ(t), b [, b] [b, ] f(x) f(x)dx = β α f ( ϕ(t) ) ϕ (t) dt (3.4.25) ( ) [, b] C 1 - f(x), g(x) f(x) g (x) dx = [ ] b f(x)g(x) f (x) g(x) dx (3.4.26)

37 A S hr/lectures/lectures-j.html 37 x > 0 log x log x := du (3.5.1) u 1/u log log 1 = 0 log x (0, ) (log x) = 1/x. x, y > 0 log(xy) = log x + log y log x x lim log x = lim log x =. x x +0 y = log x y = exp x x log x y y = log x x y x y x = exp y exp 1 e exp 0 = 1 exp x (, ) (exp x) = exp x. x, y exp(x + y) = (exp x) (exp y) exp x x lim exp x = 0 lim exp x =. x x + x := exp(x log ) (3.5.2) x e x = exp x p.107 α x > 0 d dx xα = α x α 1 (3.5.3) x α+1 (α 1) α + 1 x α dx = (3.5.4) log x (α = 1) e = exp 1 ( lim x = e (3.5.5) x x)

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo I 22 7 9 2 2 5 3 7 4 8 5 2 6 26 7 37 8 4 A 49 B 53 big O f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information