面内スピンバルブ素子における Hanle 効果

Size: px
Start display at page:

Download "面内スピンバルブ素子における Hanle 効果"

Transcription

1 21 Hanle : :

2 Copyright 2010, Hiroki Nanaumi.

3 i Hanle Py / Cu Hanle Py / Al Hanle Hanle (Dwell time) Py / Cu Hanle Py / Al Hanle

4 ii 4.4 Hanle

5 e /( ) 1 (Giant magneto- Resistance:GMR) GMR (Tunnel Magneto Resistance:TMR) 2 *1 MRAM 3 (Magnetoresistive Random Access Memory) GMR TMR *1 IBM:Data in the Fast Lanes of Racetrack Memory (SCIENTIFIC AMERICAN June 2009)

6 2 1 ( ) 1985 Johnson Silsbee 4 77 K *2 Jedema 5, 6, 7 Cu Al Fe, Co, Ni 1.1 (p) p j j j + j (1.1) j j j C e j C j + j (1.2) j S j j (1.3) j S = p j C (1.4) *2 µm

7 1.2 3 (a) (b) E E EF N (E) Density of states N (E) N (E) Density of states N (E) 1.1. (a) (b) 1.1(b) p = 0 j S = p ( 1.2) / 8

8 4 1 E E D, e N σ, σ, = e 2 N, D, (1.5) ( j, ) (E) (e > 0) (δn, ) j, = σ, E ed, δn, (1.6) (1.5)(1.6) j, = σ (, 1 ) ee δn, e N, (1.7) (δϵ, δn, N, ) µ ϵ + eϕ ϕ 1.7 j, = σ, e µ, (1.8) 9, ( 1.3)

9 1.2 5 μ ( a) ( b) ( c) lf ln 1.3. (a) / (b) (c) τ, τ 0 = δn τ δn τ 1 e j 0 = δn τ δn τ 1 e j (1.9) N τ 12 D τ sf = N τ δ, = N, δϵ δϵ δϵ = µ µ D 2 (µ µ ) = 1 τ s f (µ µ ) (1.10) D = (N + N )D D N D + N D ( 1 τ sf = ) 1 (1.11) τ τ 12 V S µ µ e = µ e (1.10) V S = V + exp ( x ) + V exp ( Dτsf x ) Dτsf (1.12)

10 6 1 Dτ sf λ Dτ sf ( 1.3) () 1.4 (δµ) j S = j j スピン μ スピンと スピン 1.4. (a) (b)

11 ( a) スピン V ( ) μ b ( c) μ の の 1.5. (a) : (b) (c) Cu 100 nm / / ( 1.5)

12 8 1 j C = j + j = 0 µ σ x + σ µ x = 0 (1.13) (V p = µ/e) (V ap = µ/e) ( V S ) (I inj ) R S V S I inj Kimura 11 A ρ R S 2ρλ sf A 1 (1 P 2 ) (1.14) 5 nm A A Cu Al A *3 R S λ (1.6) (R series S ) R series S = R S1 sinh(d/λ 1 ) + R S2 cosh(d/λ 1 ) R S1 cosh(d/λ 1 ) + R S2 sinh(d/λ 1 ) R S1 (1.15) (R parallel S ) R Sparallel = R S1R S2 R S1 + R S2 (1.16) *3 Py Cu R Cu S = 2.6 Ω, RPy S = 0.34 Ω 11 Py Cu 8

13 1.2 9 (a) (b) DV0 d R S1, l1 R, l DV0 DV1 R S2, l2 S2 2 R S1, l1 (c) DV0 R N, l R, N l F F s2 R N, ln R N, l R, l F F s1 N 1.6. (a) (b) (c) 1.6(a) (T) T V S1 V S0 = R S2 R S1 sinh(d/λ 1 ) + R S2 cosh(d/λ 1 ) (1.17) 1.6(c) S1 R S1 R S1 = (1.15) S 2 R FR N R F + R N (1.18) R S = R N sinh(d/λ N ) + R S1 cosh(d/λ N ) R N cosh(d/λ N ) + R S1 sinh(d/λ N ) R N (1.19) (R S2 ) R All S2 = ( 1 R N + 1 R F + 1 R S2 ) 1 ( R F R N RF cosh(d/λ N ) + (R F + R N ) sinh(d/λ N ) ) = 2R F (R F + R N ) cosh(d/λ N ) + (2R 2 F + 2R FR N + R 2 N ) sinh(d/λ N) (1.20) / (T 2 ) (1.17) T 2 = R S1 R N sinh (d/λ N ) + R S1 cosh(d/λ N ) (1.21) V 2 V 2 = T 2 I S R S2 (p) ( R S ) R S = R 2 F R N(R F + R N + R F cosh(d/λ N ))p 2 (2R F + R N ) ( 2R F (R F + R N ) cosh(d/λ N ) + (2R 2 F + 2R FR N + R 2 N ) sinh(d/λ N) ) (1.22)

14 10 1 Takahashi 12 R S = 2R N ( P J 1 P 2 J ( P J 1 P 2 J ) 2 R J R R N + p F F R N e d/λ N ) 2 R J R N + 2 R F R N e 2d/λ N (1.23) P J, R J (R J = 0) (1.22) (R J >> R N ) (1.23) R S = 1 2 R NP J exp( d/λ N ) (1.24) Hanle Hanle Hanle s µ = γs B µ µ B ds dt = µ B ω L ω L = gµ BB g, µ B g (1.25) t ϕ = ω L t 1.7 cos(ϕ)

15 (a) B (b) B y z x or I F1 F2 V (c) スピン ( V / I) 1 0 F1,F2 F1,F π 2π スピン ( φ) [rad] 1.7. ( δn δn δn ) δn t = D 2 δn x 2 δn τ SF (1.26) t = 0x = 0 14, 15 δn(x, t) = 1 4πDt exp ( x2 4Dt ) ( exp t ) τ SF (1.27)

16 12 1 (1.26) x = 0 ( 1.8) ( 1.9) スピン スピン t = t0 t = t1 P t = t2 x x=0 x=l 1.8. PI/Ae (1.27) n n n n = IP J ea = IP J ea 0 λ N 2D exp 1 dt exp 4πDt ( ) ( ( x2 exp t ) 4Dt τ SF ) (1.28) x DτSF µ µ = 2 N(ϵ F ) (n n ) V I = P2 J λ ( N σa exp x ) (1.29) λ N P J, A, σ (1.29)

17 P x=l t スピンをしない 2 1 x P exp 4Dt 4Dt スピンをした τ SF P 2 1 x t exp exp 4Dt 4Dt SF 1.9. x = L (1.29) (1.24) ω L t cos(ω L t) n n = IP J ea 0 0 dt ) ( 1 exp ( x2 exp t ) cos (ω L t) (1.30) 4πDt 4Dt τ S F 5 2 V I = P ) J 1 dt e 2 exp ( x2 exp N(ϵ F )A 4πDt 4Dt ( t τ S F ) cos (ω L t) (1.31) F 0 dt ) ( 1 exp ( x2 exp t ) cos (ω L t) (1.32) 4πDt 4Dt τ S F

18 14 1 F [ F = Re 0 dt 1 = Re 2 D 1 exp ( x2 4πDt 4Dt ( exp 1 L Dτ SF iω L 1 τ SF i ω L D ) ( exp t ) τ SF ) ] e iω Lt (1.33) (1.33) (1.34) 1.10 b ω L τ SF 2 L (1.34) l 2 λ N l 2π 2π Hanle Hanle 16, 17 Hanle 18, 19

19 Hanle Hanle Hanle

20 λ

21 (a) (b) (c) (d) (e)

22 18 2 K-Cell Al Py,Co Cu (K-Cell) ( ) ( ) (トランスファーる) (LL)K-Cell *1 Cu K-Cell Al * TorrLL Torr *1 Knudsen cell *2

23 PMMA/MMA / Si/SiO 2 MMA() 180 C 3 PMMA() 180 C C/m 2 MIBK( ) IPA() 1 : 3 30 IPA PMMA MMA (b) PMMA Cu 2.4 Cu Al

24 (a) 2 Si/SO 2 (b) (c) (d) (e) (a)(b)(e)

25 T = 10 K He 1.5 K 10 K ポンプ He ( ヒーター ) 2.5.

26 ロックインアンプ オシレータ V- V+ プリアンプ A 2.6. ロックインアンプ オシレータ V- V+ プリアンプ A DC 2.7.

27 23 3 Hanle Hanle Hanle Hanle Hanle Hanle Py/Cu Al Hanle 3.1 Py / Cu Hanle Hanle (I) : (II) : 3.1 *1 ( Py ) λ Cu Py Cu *1 Ni 80 Fe 20

28 24 3 (a) 800 nm (b) (c) Py Py Cu Py Cu Cu Al2O3 3nm 100nm 30nm 100nm 30nm 3.1. SEM Py 800 nm Py,Cu 30 nm,100 nm (II) 3 nm 30 nm100 nm (II) Py Al 3 nm (20 Pa) 20 Al 2 O 3 *2 Py Py Py / 10 K Hanle *3 ( AMR ) ( 3.2) (a) (b) B (Ω) Py wire resistance AMR K Magnetic field (KOe) I- I+ Py V- V V AMR (a) Py (b) *2 Al *3 Anisotropic Magneto-Resistive effect

29 3.1 Py / Cu Hanle 25 (II) I-V I-V (II) ( (3.3)) (a) dv/di (Ω) (b) V+ I- V- (c) Current (ma) DC current (ma) I Voltage (mv) 3.3. (a) (b) (c) I-V (I) (II) 0.06 Ω, 0.63 Ω (3.4) (II) Spin accumulation signal V/I (mω) R -0.5 L= 800 K Magnetic field (KOe) ( I) R = 0.1 (m Ω) ( II) R = 1.6 (m Ω) 3.4. Py / Cu ( R)

30 26 3 Hanle Py (3.1) (I) (II) V(, θ 1, θ 2 ) = V B cos θ 1 cos θ 2 + V(B = 0) sin θ 1 sin θ 2 (3.1) θ 1, θ 2 AMR Hanle signal (normalized) Py / 10 [K] R ( I) ( II) I- V- B Magnetic field (koe) I+ V (I) (II) Hanle Hanle B = Py / Al Hanle Py / Cu Al Py Al Al 60 nm (20 Pa, 20 ) Al Py 40 nm ( 3.6(b)) Py 30 nm Al 60 nm ( 3.6(a))Al ( 3.6(c))

31 3.2 Py / Al Hanle 27 (a) Al (b) Al Py Py Py 1 μ m 1 μ m (c) グレイン 3.6. (a)py/al (b)py/al (c) Al (a) V (b) 1135 Py / Al K Tunnel I dv/di (Ω) V- I- V+ Py Cu I+ +DC DC current (ma) 3.7. (a)i-v (b)py / Al

32 28 3 Py / Al I-V 3.7 (dv/di) Al Hanle AMR Py Py B, B S sin θ = B/B S (3.1) V(B ) = V B (1 (B /B S ) 2 ) + V(B = 0)(B /B S ) 2 (3.2) λ = Dτ SF = 640 nmal R Al S = 7.90 Ω*4 Hanle 3.9 Hanle Py / Cu Py / Al Hanle ( 3.11) Spin accumulation signal (m Ω ) L = K Magnetic field (koe) data Fitting 3.8. () Hanle () ρ Al = µωcm τ SF = 90 ps, D = m 2 s 1, P J = Al λ = DτSF = 640 nm AMR B S = 6.0 koe *4 150 nm 60 nmρ Al =

33 3.2 Py / Al Hanle 29 Hanle signal (normalized) Py / Al K R/2 オーミック L= 800 nm トンネルフィット トンネル L= 950 nm Magnetic field (koe) 3.9. Py/Al Hanle Hanle B =0 150 nm Al Py Hanle signal (normalized) L= K R/2 Py / Cu オーミック Py / Al オーミック Magnetic field (koe) Py/Al Py/Cu L = 800 nm Hanle

34 Hanle Py / Cu Py / Al Hanle *5 Py Hanle Py(R Py S = 0.12 Ω *6 ) Co(R Co S = 1.40 Ω *7 ) Hanle L = 800 nm *8 Cu Co 100 nm, 30 nm 800 nm Cu Cu Co 100nm 30nm Co / Cu SEM Co, Cu 100nm, 30 nm *5 spin sink effect *6 ρ Py = µωcmλ Py =5 nm A = nm 2 *7 ρ Co = 14 µωcm λ Co = 50 nm A = nm 2 *8 Co

35 3.3 Hanle K Cu ρ Cu = 1.07 µωcm Co / Cu 0.03 Ω 0.04 mω Py / Cu 0.1 mω ( 3.4) Hanle 14 KOe Co *9 Co Hanle Py / Cu ( 3.12) Hanle signal (normalized) K R/2 Py / Co オーミック Py / Cu オーミック Magnetic field (koe) Co / Cu Py / Cu Hanle *9 CoPy 30 koe10 KOe 20

36 32 4 Hanle 4.1 (Dwell time) τ D j e n v j = env σ =, j D = ed n σ x *1 v σ = D 1 n σ n σ x (4.1) n (x)n (x) n σ = n +,σ exp ( x + n,σ exp λ) ( x ) λ (4.1) n +,σ = N 0 2 (1 α), n,σ = N 0 2 (1 + α), N 0 = n +,σ + n,σ (4.2) α = (R SN + R SI + R SF ) cosh( L λ ) + (R SI + R SF ) sinh( L λ ) (R SN + R SI + R SF ) sinh( L λ ) + (R SI + R SF ) cosh( L λ ) (4.3) *1 (1.6) E =0

37 4.2 Py / Cu Hanle 33 R SN, R SI, R SF L L RSN RSI RSN RSI RSN RSF RSF 4.1. (4.2) 1 (R SI R SF, R SN ) n +,σ = 0 (R SI = 0) n +,σ < 0 (4.1) (4.4) v σ = D 1 n σ n σ x = D λ (n +,σ exp( x λ ) n,σ exp( x λ ) ) n +,σ exp( x λ ) + n,σ exp( x λ ) (x = 0) (x = L) (τ D ) L dx τ D = 0 v = λ D L + λ ln n n + n n + exp( 2L λ ) = λ D L + λ ln (R SN + R SI + R SF ) cosh ( ) L λ + (RSI + R SF ) sinh ( ) L λ (R SN + R SI + R SF ) ( sinh ( ) ( )) L λ + cosh L λ (4.5) τ D (4.4) (4.5) 4.2 Py / Cu Hanle ( (I)) ( (II)) Hanle 3.5 (I) Hanle (II) Hanle Dwell time (τ D )

38 34 4 (I) τ D = 24 ps (II) τ D = 34 ps *2 Dwell time Hanle R SI (I) 0.06 Ω (II) 0.63 Ω 10 τ D ( 4.2) (4.5) R SI ln L τ D L 800 nm Dwell time (ps) ( I) ( II) R SI ( Ω) 4.2. (4.5) Dwell time (R SI ) Dwell time R SN = 3.21 Ω, R SF = Ω, λ = 1500 nm, L = 800 nm, D = m 2 s 1 R SI = 0 *2 λ Cu = 1500 nm, D=0.015 m 2 s 1, R SF = Ω, ρ Cu = 1.07 µωcm

39 4.3 Py / Al Hanle Py / Al Hanle Py / Cu Py / Al Py / Al Py / Cu Hanle 3.9 Py/ Al Hanle (4.5) (R SI = 0) (R SI R SF, R SN ) τ D τ Ohmic D τ Tunnel D R SI =0,R SN R SF λl D R SI R SF,R SN λl D 1 + ln cosh ( ) L λ cosh ( L λ ) + sinh ( L λ 4.3 λ τ SF Dwell time オーミック トンネル ) (4.6) τd τsf 1 Py / Al トンネル Py / Al オーミック Py / Cu オーミック Dwell time (x/λ) Dwell time (τ D /τ sf ) τ Cu sf = 150 psτ Al sf =90 psl = 800 nmλ Al = 640 nmλ Cu = 1500 nm

40 36 4 Hanle (4.4) Hanle スピン μ L μ L L トンネル オーミック Py / Cu Py / Al Hanle τ D Al Cu R Al = 7.9 Ω *3 R Cu = 3.2 Ω *4 Al τ D (4.5) Al Cu τ D τ Al D = 58 ps = 24 ps τ Cu D τ D Py / Cu Py / Al Hanle Py τ D *3 λ Al = 643 nmρ Al = 5.88 µωcm *4 λ Cu = 1500 nmρ Cu = 1.07 µωcm

41 4.4 Hanle 37 Co τ D 3.12 τ D Py Co τ Py D = 24 ps τco D = 37 *5 ps 10 ps τ D Hanle Co Py Hanle *5 R Co = 1.4 Ω

42 38 5 Hanle Hanle Hanle Hanle Hanle ahanle bhanle chanle τ D Hanle Hanle

43 Hanle Hanle Hanle Hanle

44 40 [1] T. Valet and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48(10), (1993). [2] Julliere, Tunneling between ferromagnetic films, Phys. Lett. A 54A(3), (1975). [3] S. Tehrani and e. al, Magnetoresistive random access memory using magnetic tunnel junctions, Proceedings of the IEEE 91(5), (2003). [4] M. Johnson and R. H. Silsbee, Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals, Phys. Rev. Lett. 55(17), (1985). [5] F. J. Jedema. Electrical spin injection in metallic mesoscopic spin valves. PhD thesis, the University of Groningen, (2002). [6] F. J. Jedema, A. T. Filip, and B. J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve, Nature 410(1), (2001). [7] F. J. Jedema, H. Heersche, A. Filip, J. Baselmans, and B. van. Wees, Electrical detection of spin precession in a metallic mesoscopic spin valve, Nature 416(2), (2002). [8] D. Steiauf and M. Fähnle, Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics, Phys. Rev. B 79(R), (2009). [9] M. A. M. Gijs and G. E. W. Bauer, Perpendicular giant magnetoresistance of magnetic multilayers, Adv. Phys. 46(3), (1997). [10] P. C. van Son, H. van Kempen, and P. Wyder, Boundary Resistance of the Ferromagnetic- Nonferromagnetic Metal Interface, Phys. Rev. Lett. 58(21), (1987). [11] T. Kimura, J. Hamrle, and Y. Otani, Estimation of spin-diffusion length from the magnitude of spin-current absorption: Multiterminal ferromagnetic/nonferromagnetic hybrid structures, Phys. Rev. B 72(1), (2005). [12] S. Takahashi and S. Maekawa, Spin injection and detection in magnetic nanostructures, Phys. Rev. B 67(5), (2003). [13] E. I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem, Phys. Rev. B 62(24), R16267 R16270 (2000). [14] S. Zhang and P. Lavy, Time dependence of spin accumulation and magnetoresistance in magnetic multilayers, Phys. Rev. B 65, (2002).

45 41 [15] B. Huang and I. Appelbaum, Spin dephasing in drift-dominated semiconductor spintronics devices, Phys. Rev. B 77, (2008). [16] M. Johnson and R. H. Silsbee, Spin-injection experiment, Phys. Rev. B 37, 5326 (1987). [17] M. Johnson and R. H. Silsbee, Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals, Phys. Rev. Lett. 55(17), (1985). [18] B. Huang, H.-J. Jang, and I. Appelbaum, Geometric dephasing-limited Hanle effect in longdistance lateral silicon spin transport devices, Appl. Phys. Lett. 93, (2008). [19] J. Li, B. Huang, and I. Appelbaum, Oblique Hanle effect in semiconductor spin transport devices, Appl. Phys. Lett. 92, (2008). [20].., (1960). [21] N. Theodoropoulou, A. Sharma, R. Loloee, P. J. Pratt, W., and J. Bass, Interface specificresistance and scattering asymmetry of permalloy/al, J. Appl. Phys. 99(9), 08G502 (2006).

46 42 (:)

47 Hanle

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

研究成果報告書

研究成果報告書 Fe 4 N (1) 3d MBE (2) AMR (3) BiFeO 3 150 C/cm 2 Fe 4 N > 400 Fe 0 0.7 M MTJ T TMR (4) MTJ Fe 4 4N Fe 4 N BiFeO 3 Fe 4 4N Fe N N Fe 4 N Mn 4 N Fe 4 N MTJ J Co x Fe 4-x N, Ni x Fe 4-x N x = 0 T TMR ~ 4,

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1).3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P =.52 1) S.Mizutani, S.Ishida, S.Fujii and S.Asano, Mater. Tran. 47(26)25. 2) M.Hiroi,

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

CAT. No. 1154b 2008 C-9

CAT. No. 1154b 2008 C-9 T CAT. o. 1154b IS SK µm D K mm & Dmp 1 ea µm d CS mm & Bs K ia & dmp V dp & dmp & Hs 1 mm d & ds & & B2s d2s & Hs & A1s d d B C B2 H A1 SjD d2 H d µm d & dmp & d1mp & dmp V dp 1 mm d d d B & dmp & d1mp

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

untitled

untitled 2008-11/13 12 4 12 5 401 501 702 401 501 A-1 9:00-10:30 B-1 9:15-10:30 C-1 9:00-10:30 A-5 9:00-10:30 B-5 9:15-10:30 A A-2 10:45-12:15 B-2 10:45-12:15 C-2 10:45-12:15 A-6 10:45-12:15 B-6 10:45-12:15 A B

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: [email protected] 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

基礎地学I.ppt

基礎地学I.ppt I [email protected] http://geotec.sci.hokudai.ac.jp/geotec/ I 800 2940 7/26 8/9 2/3 9 15 10% 6/1 20% 70% 15% 30% 40% 15% R=6400 km θ (S) θ/360 o =S/2πR (1) GPS (Global Positioning System)

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I [email protected] 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

あさひ indd

あさひ indd 2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000

More information

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ 17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b

More information

OPA277/2277/4277 (2000.1)

OPA277/2277/4277 (2000.1) R OPA OPA OPA OPA OPA OPA OPA OPA OPA µ µ ± ± µ OPA ±± ±± ± µ Offset Trim Offset Trim In OPA +In -Pin DIP, SO- Output NC OPA Out A In A +In A A D Out D In D +In D Out A In A +In A A B Out B In B +In B

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )

; 200 µs 0 1 ms 4 exponential 80 km 5 4 10 7 m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) 1 0 7 t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n ) - [ : ( ) ] 1 (contact) (interaction) 1 2 19 MTI c Mesosphere Thermosphere Ionosphere (MTI) Research Group, Japan 1 2 (1) : (2 ) (2) : (3 ) (3) : (2, 3 ) (4) : - (4 ) 2 3 3 X 1 ; 200 µs 0 1 ms 4 exponential

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

スライド 1

スライド 1 研究期間 : 平成 22 年度 絶縁体中のスピン流を用いた 超低電力量子情報伝送 演算機能デバイスの研究開発 安藤和也 東北大学金属材料研究所 総務省戦略的情報通信研究開発推進制度 (SCOPE) 若手 ICT 研究者育成型研究開発 Outline 1. 研究背景と研究開発のターゲット スピントロニクスとスピン流 2. 研究期間内 ( 平成 22 年度 ) の主要研究成果 1. あらゆる物質へ応用可能なスピン注入手法の確立

More information

物理化学I-第12回(13).ppt

物理化学I-第12回(13).ppt I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information