I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

Size: px
Start display at page:

Download "I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +"

Transcription

1 I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D ( )

2 I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + i(y ± y 2 ), z z 2 = (x x 2 y y 2 ) + i(x y 2 + x 2 y ),. z /z 2, x, y, x 2, y 2. (3) z = x+iy x iy z (complex conjugate), z.. (z z 2 ) = z z 2, z /z 2 = z /z 2 (z 2 ). (4) z = x + iy z x 2 + y 2. 2 z, z 2,. z + z 2 z + z 2 ( ) (5) n z, z 2,, z n,. z + z z n z + z z n (.) ( )

3 I 2.3 a, t. e at e at (at) n = n! n= = + at! + (at)2 + 2!.! =. e at, df(t) = af(t), f() =, dy. a. () e iy = cos y + i sin y (.2). y. (2) 2 z, z 2, e z e z 2 = e z +z 2 ( : e at ) ( )

4 I 3.4 z = x + iy (x, y ), (complex plane). z = r(cos θ + i sin θ) = re iθ (.3)... r = z = x 2 + y 2, θ z (argument), θ = argz. θ (phase) z /n : w n = z w z = re iθ z /n = n r exp[ i (θ + 2πk)] (k =,,... n ) n z /n n 8 /3 = 2, 2e 2π 3 i, 2e 4π 3 i () z, argz. (2) i, i, i, + 3i (3). (cos θ + i sin θ) n = cos nθ + i sin nθ, (.4) (4) z 3 =,. (5) n z n =. (6) /4, i 2/3, i i ( )

5 I 4 [7 ] z < z n = r < z n= r n cos nθ = n= r cos θ 2r cos θ + r 2 r n sin nθ = n= r sin θ 2r cos θ + r ( )

6 I 5.5 (.2), (.3). () cos(θ ± θ 2 ) = cos θ cos θ 2 sin θ sin θ 2 (2) sin(θ ± θ 2 ) = cos θ sin θ 2 ± sin θ cos θ 2 (3) cos 2θ = cos 2 θ sin 2 θ (4) sin 2θ = 2 sin θ cos θ ( )

7 I 6.6 k m x m m d2 x = kx (.5) dx2 d 2 x k dx = 2 ω2 x, ω 2 = (.6) m x = ae bt (.7) a, b b 2 ae bt = ω 2 ae bt b = ±ω x = a e iωt + a 2 e iωt (.8) t = x = A x() = A, ẋ() =. a, a 2 ẋ = iω(a e iωt a 2 e iωt ) a = a 2 = A/2 x = 2 A(eiωt + e iωt ) = A cos(ωt) (.9) () mẍ + 2λẋ + mω 2 x = λ λ (.9) ( )

8 I 7 2. D w = f(z). z D z, w w, f(z) z = z w. lim f(z) = w (2.) z z. z w w ( w < ) ( ). z z = re iθ r θ w = f(z) w f(z) z z w 2. w = (z ) 2 z z = re iθ r w = r 2 e 2iθ θ 2.2 lim (z z )2 = w = z z z z = re iθ w = r iθ re iθ = e 2iθ. r r w e 2iθ θ = w θ = π/2 w e iπ = w = f(z) 3. z = z f(z ) 2. lim z z f(z) = w 3. w = f(z ), f(z) z = z tex ()

9 I z 2 x, y z = x + iy f(z) x, y 2 f(z) = z 2 = x 2 y 2 + 2ixy f(z) = z 2 = x 2 + y 2. 2 x, y z z = x iy 2 z, z f = z 2 f(z) = z z z = x + iy, z = x iy. (2.2) x = 2 (z + z ), y = 2i (z z ). (2.3) f (x, y) (z, z ) f(x, y) z = z = x + iy x y f (z, z ) z = z ( ) ( ) f f f(z) = f(z ) + (z z ) + (z z z z z ) + O( z z 2 ) (2.4) z f(z) f(z ) z z = ( ) ( f f (z z ) + z z z )z + O( z z ) (2.5) z z z z z z = re iθ r ( ) ( ) f(z) f(z ) f f = (2.6) z z z z z + z e 2iθ ( f/ z ) z = z θ θ z ( ) f(z) z = z f (z ) df (z dz ) f (z ) z = z f z = (2.7) (2.7) - (Cauchy-Rieman) z z z tex ()

10 I 9 z 2 z 2 D f(z) f(z) D tex ()

11 I 2.3 (2.7) (2.7) / z x, y (2.3) x z = 2, y z = 2i z z x z = 2, z z = x z x + y z y z = 2i y = 2 ( x + i ) y (2.8) x, y z = ( 2 x ). (2.9) i y f(z) u v f(z) = u(x, y) + iv(x, y) (2.) (2.9) - (2.7) = x (u + iv) ( u (u + iv) = i y x v ) ( u y i y + v ) x u x = v y, v x = u y (2.) - (2.8). (2.9) 2 z z = ( 4 x ) ( i y x + ) = ( ) 2 i y 4 x + 2 =. (2.2) 2 y 2 4 (2.7) f f(z) = u(x, y) + i v(x, y) = u(x, y) = v(x, y) =. (2.3) tex ()

12 I z. e z, cos z, sin z.! =. e z = + z! + z2 2! + = z n n!, (2.4) n= cos z = z2 2! + z4 4! + = n= sin z = z z3 3! + z5 5! + = n= ( ) n z 2n, (2.5) (2n)! ( ) n z 2n+ (2n + )! (2.6) e iz = cos z + i sin z, e iz = cos z i sin z (2.7) 3 cos z = eiz + e iz, sin z = eiz e iz 2 2i (2.8) cos 2 z + sin 2 z = ( ) e cos 2 z + sin 2 iz + e iz 2 ( ) e iz e iz z = + = 2 2i d dz ez = e z, d d cos z = sin z, dz sin z = cos z (2.9) dz : cosh z = ez + e z, sinh z = ez e z 2 2, tanh z = sinh z cosh z (2.2) tex ()

13 I 2 z cosh 2 z sinh 2 z = (2.2) cosh z, sinh z (2.2) ( z < ) tanh z z = ±πi (2.2) z d d cosh z = sinh z, dz d sinh z = cosh z, dz dz tanh z = cosh 2 z (2.22) z = ±πi/2 cosh z = tanh z z = ±πi/2 3 cosh z z z z = re iθ ln z = ln r + iθ z ln 2 z (argument) i z ln z = ln z + i arg z (2.23) z > arg z = ln z = ln z ln( 2) = ln(2e iπ ) = ln 2 + iπ, ln i = π 2 i, ln( + i) = 2 ln 2 + iπ 4, (2.23) z = z = 2.7 z z θ = arg z = (2.23) 2 ln z ln z d dz ln z = z. (2.24) tex ()

14 I 3 z = z e iθ n z = z e i(θ+2nπ) = z e iθ e 2nπi. n e 2nπi = ln ln z = ln z + i(θ + 2nπ), n =, ±, ±2, (2.25) ln z z z z θ θ < 2π ln z z = re i(θ+2nπ), (n =, ±, ±2, ) f(z) = z = z /2 (2.26) z = re iθ z = re i(θ+2π) f(z) = z /2 f(re iθ ) = r /2 e iθ/2, f(re i(θ+2πi) ) = r /2 e iθ/2 e iπ = r /2 e iθ/2 f(re i(θ+4π) ) = r /2 e iθ/2 e 2πi = r /2 e iθ/2 = f(re iθ ) z r 2 (4π ) z /2 z /2 2 z z < 2π z /2 θ < π z /2 z = d dz z/2 = (2.27) 2z /2 z α α d dz zα = αz α (2.28) tex ()

15 I tex ()

16 I 5 2. f(z) x = (z + z )/2, y = (z z )/2i. f(z) = z z 2. f(z) = z + /z 3. f(z) = x 2 + y 2 + 2ixy, f(z) = x 2 + y 2 2ixy 4. f(z) = e y (cos x + i sin x), f(z) = e y (cos x i sin x) f(z) = u(x, y) + iv(x, y) u(x, y) v(x, y) V V = u f(z). df/dz = V x iv y 2. V = 3. V = z cosh z, sinh z, tanh z cosh z = cos iz, sinh z = i sin iz, tanh z = i tan iz cosh(z + z 2 ) = cosh z cosh z 2 + sinh z sinh z 2, sinh(z + z 2 ) = sinh z cosh z 2 + cosh z sinh z 2, tanh(z + z 2 ) = tanh z + tanh z 2 + tanh z tanh z 2 3? tex ()

17 I z = z = 2 (2.25). u(x, y) = ln z, v(x, y) = arg z u, v - (2.) 2. ln z z z - ln z/ z = (2.7) tex ()

18 I 7 3. dx x x x +i dz z + i () z = z = z = + i (2) z = i z = i z = + i () (2) z = x + iy (3.) x, y dz = dx + idy (3.2) +i dz z = +i (dx + idy)(x + iy) (3.3) () y = dy = + i x = dx = dz z = dx x + idy ( + iy) = dx x + i dy + i 2 dy y () = 2 + i + (3.4) i2 2 = i (2) i x = dx = i + i y = dy = (2) dz z = idy iy + () dx (x + i) = i 2 dy y + dx x + i dx = i (3.5) 2 + i = i tex ()

19 I 8 +i dz z (3.6) z = x iy (3.7) +i dz z = +i () dz z = dx x + idy ( iy) = (dx + idy)(x iy) (3.8) () dx x + i dy + i( i) dy y = 2 + i + 2 = + i (3.9) (2) dz z = idy ( iy) + dx (x i) = i( i) (2) dy y + dx x i dx = i = i (3.) () tex ()

20 I z = a z = b b a dz f(z) (3.) z = a b A z = b a B C C dz f(z) (3.2) C C f(z) z = x + iy f(z) x, y x + iy () (x + dx) + iy (2) (x + dx) + i(y + dy) (3) +i(y + dy) (4) x + iy. f(x, y)dx 2. f(x + dx, y)(idy) = if(x + dx, y)dy 3. f(x, y + dy)( dx) = f(x, y + dy)dx 4. f(x, y)( idy) = if(x, y)dy dz f(z) = [f(x, y) f(x, y + dy)]dx + i[f(x + dx, y) f(x, y)]dy ()+(2)+(3)+(4) = ( f ) ( ) f y + i f dxdy = i x x + i f dxdy y (3.3) C D D D C ( ) f dz f(z) = i dxdy x + i f (3.4) y C D (2.3) x = 2 (z + z ), y = 2i (z z ) tex ()

21 I 2 x, y z, z (x, y) idxdy = i (z, z ) dzdz = i 2 2i dzdz = 2 dzdz. (3.5) (2.9) C 2 2i x + i y = 2 (3.6) z dz f(z) = dzdz f (3.7) D z C f z = (3.8) dz f(z) = (3.9) (3.8) -f(z) D D f(z) f(z) +i [ z 2 dz z = 2 ] +i = ( + i)2 2 = i tex ()

22 I D z f(z) D f(z) z z z = z z r S r f(z)/(z z ) D S r D dz f(z) = dz f(z) (3.2) C z z S r z z S r z = z + re iθ (r = const, θ < 2π) (3.2) dz = ire iθ dθ (3.22) S r dz f(z) z z = 2π ire iθ dθ f(z + re iθ ) re iθ 2π = i dθ f(z + re iθ ). r integrand f(z ) = const 2πif(z ) f(z ) = dz f(z). (3.23) 2πi C z z f(z ) f(z) = const dz = 2πi (3.24) z z C tex ()

23 I f(z) D C D D z f(z ) (3.23) f(z ) = dz f(z) (3.25) 2πi C z z z f (z ) = 2πi f (z ) = 2 2πi C C dz dz f(z) (z z ) 2 (3.26) f(z) (z z ) 3 (3.27) f (z ) = 3 2 2πi f (n) (z ) = n! 2πi C C dz dz f(z) (z z ) 4. (3.28) f(z) (z z ) n+ (3.29) (3.29). f(z) z = z f (n) (z ) f(z) tex ()

24 I z = z z = z f(z) a f(z) a z z a > z a /(z z ) z = a z z = z a z a z a = k= (z a) k (z a) k+ (3.25) ( z a z a ) < (3.3) f(z ) = (z a) k dz f(z) 2πi C (z a) k+ k= = a k (z a) k. (3.3) k= z = a 2 a k = f(z) dz (3.32) 2πi (z a) k+ C z = a b b f(z) b f(z) a f(z) z tex ()

25 I f z = (3.33) f (z) f (n) tex ()

26 I i (3.) 3. i z z = re πi/4 ( r 2) 3.2 (3.2) 3.3 n C dz (z z ) n = { 2πi (n = ) (n ) C z 3.4 C z = 2 2πi dz z f(z) C dz f (z) f(z) = dz C z z C (z z ) 2 C 3.6 n. P n (x) = d n 2 n n! dx ( n x2 ) n P n (x) = 2 n 2πi dz ( z2 ) n (z x) n+ P (x) =, P (x) = x, P 2 (x) = 3 2 x2 2, tex ()

27 I H n (x) = ( ) n n! x2 e 2πi H n (x) = ( ) n e x2 dz dn dz n e x2 e z2 n! = (z x) n+ 2πi dz z n e z2 +2zx z z + x H (x) =, H (x) = 2x, H 2 (x) = 4x 2 2, H 3 (x) = 8x 3 2x, 3. L n (x) = ex 2πi L n (x) = ex d n n! dz n (xn e x ) dz z n e z (z x) = n+ 2πi ds e xs s ( s)s n+ z = x/( s) L (x) =, L (x) = x +, L 2 (x) = 2! (x2 4x + 2), tex ()

28 I f(z) D z a < z a f(z) a f(z ) = dz f(z) = a k (z a) k, a k = f(z) dz 2πi C z z 2πi C (z a) = f (k) (a) k+ k! k= D α f(z) α f(z) f(z) = /z 2 z /z 2 /z 2 z = f(z) = z 2 + z = ±i 2 f(z) = sin z z = nπ (n =, ±, ±2, ) f(z) = sin z z z = z = z sin z = ) (z z3 z z 3! + z = α f(z) f(z) (z α) k k lim (z z α α)k f(z) = a ( < a < ). (4.) lim(z i) z i z 2 + = lim(z i) z i (z + i)(z i) = 2i ()

29 I 28 (z α) k f(z) z α a α f(z) k (pole) z = i /(z 2 + ) f(z) = exp ( ) = z k= k! ( ) k z z = n z z n e /z f(z) ( f(z) = exp ) z z f(z) z = ()

30 I f(z) D z a < z a f(z) a f(z ) = dz f(z) = 2πi C z z a k = 2πi C dz a k (z a) k, (4.2) k= f(z) (z a) = f (k) (a) k+ k! (4.3) f(z) D α f(z) α α f(z) z = α f(z) z α f(z) (z α) k z α f(z) D α α D D D C D f(z) f(z) f(z ) = dz f(z) = dz f(z) dz f(z) (4.4) 2πi C z z 2πi C 2 z z 2πi C z z z D C 2, C C 2 z z α < z α C 2 = z z z α z α z α = k= (z α) k (z α) k+ (4.5) (4.4) dz f(z) = 2πi C 2 z z a k (z α) k (4.6) k= ()

31 I 3 a k = f(z) dz (4.7) 2πi C 2 (z α) k+ z z α < z α = z z z α (z α) k z α = (4.8) (z α) k k= z α (4.4) 2 dz f(z) = 2πi C z z a k = 2πi k= f(z) = a k (z α) k (4.9) dz f(z)(z α) k. (4.) k= a k (z α) k (4.) a k = f(z) dz (k =, ±, ±2, ) (4.2) 2πi C (z α) k+ C α D 3 f(z) D z = α f (k) (α) a k = f (k) (α) k! D f(z) α (4.2) k integrand D a k = (k =, 2, 3, ) k =,, 2,.. (4.2) f(z) z = α (k ) k < k = n (n > ) z = α n (pole) k = a z = α f(z) (residue) 3 C D D α ()

32 I f(z) z = α n f(z) f(z) = a n (z α) + a n+ n (z α) + a n+2 n (z α) + + a n 2 z α + a + a (z α) + (z α) n (z α) n f(z) = a n +a n+ (z α)+a n+2 (z α) 2 + +a (z α) n +a (z α) n +. n z a n,, a 2 d n dx [(z n α)n f(z)] = (n )!a + n!! a (z α) + z α a 4 Res f(α) a = (n + )! a (z α) ! [ ] d n (n )! dx {(z n α)n f(z)} z α (4.3) f(z) z = α n z Res f(z ) = [(z α)f(z)] z α (4.4) 4. f(z) = (z )(z + 2) z = z = 2 (4.4) (4.5) 4.2 Res f() = 3, Res f( ) = 3. f(z) = cos z z 3 z = 3 z = Res ( cos z z 3 )z= = 2! [ d 2 ( z 3 cos z = dz 2 z )]z= 3 2 [ cos z] z= = 2. cos z = ( z 3 z 3 2! z2 + ) 4! z4 = z 3 2z + 4! z 4 = residue = ()

33 I z = f(z) = exp ( ) z z z = f(z) = k= f (k) () z k (z ) k! f (k) () = lim z f (k) (z) 4.2 f(z) = (z )(z + 2) (4.6) z = (4.2) w = z /(z + 2) w w 4.3 f(z) = (z )(z + 2) (4.7) z = 4.4 z = π/2 f(z) = tan z 4.5 f(z) = sin z ()

34 I f(z) D f(z) = a k (z α) k = + a 2 (z α) + a 2 z α + a + a (z α) + (5.) k= z = α C dz f(z) = a k dz (z α) k. (5.2) C k= k = 3.3 k = 2πi a = Res f(α) dz f(z) = 2πi Res f(α) (5.3) C α k (k =, 2, ) α k C k C k D C C k f(z) dz f(z) = dz f(z) + dz f(z) + (5.4) C C C 2 C k C dz f(z) = 2πi k C k dz f(z) = 2πi Res f(α k ) (5.5) Res f(α k ) (5.6) C 2πi ()

35 I dx f(x) I = dx x 2 + d dx tan x = x 2 + (5.7) (5.8) dx x 2 + = [ tan x ] = π ( ) π 2 2 = π (5.9) C dz z 2 + integrand (5.) α = ±i (5.) C C. z = R z = R R C 2. R C 2 C C integrand α = i ( ) [ ] dz = 2πi Res = 2πi lim (z i) = π (5.2) z 2 + z 2 + z i z 2 + C z=i C 2 z = Re iθ C 2 R = const, < θ < π dz = ire iθ dθ dz π C z 2 + dθ R R 2 e 2iθ + = π dθ R + = π ( ) R + O (5.3) R 3 R 2 e 2iθ ()

36 I 35 R C C I R dz z 2 + = dx = π. (5.4) x 2 + C f(z). 2. arg z π z f(z) /z 2 (f(z) = O(/z 2 ) for z ) dx f(x) = 2πi ( ) (5.5) ()

37 I dx f(x)e iax dx sin x x z dz eiz z (5.6) (5.7) R > r >. R < z < r 2. C r r (π > θ > ) 3. r < z < R 4. C R R ( < θ < π) integrand r R dz eiz z = = dx eix R x Cr + dz eiz z + dx eix r x CR + dz eiz z (5.8) C R z = Re iθ = R(cos θ + i sin θ), dz = ire iθ dθ ( < θ < π) (5.9) CR dz eiz z = i π π dθ e R(i cos θ sin θ) = i dθ e R sin θ e ir cos θ (5.2) < θ < π sin θ > R integrand R CR dz eiz z (R ) (5.2) C r Cr dz eiz z = i π dθ e r(i cos θ sin θ) (5.22) ()

38 I 37 r e r(i cos θ sin θ) Cr dz eiz z iπ (r ). (5.23) R r r R r dx eix x + dx eix R x = dx eix r x + dx e ix R x r, R R = 2i dx sin x r x. (5.24) dx sin x x = π 2 (5.25) f(z). 2. z arg z π f(z) lim f(z) = ( arg z π) (5.26) z dx f(x)e iax = 2πi ( ) (a > ) (5.27) ()

39 I 38 2π 5.4 dθ f(cos θ, sin θ) 2π z = e iθ 2π dθ a + b cos θ dθ a + b cos θ = 2 i (a > b > ) (5.28) dz bz 2 + 2az + b Integrand (5.29) z = b ( a ± a 2 b 2 ) = { z+ z (5.3) z + z = z + ( ) ( ) Res = Res bz 2 + 2az + b z=z + b(z z + )(z z ) z=z + (5.3) = b(z + z ) = 2 a 2 b. 2 dz bz 2 + 2az + b ( ) = 2πi Res bz 2 + 2az + b z=z + = πi a2 b 2. (5.32) 2π dθ a + b cos θ = 2π a2 b 2 (a > b > ). (5.33) 2π z = e iθ 2π dθ = i dθ f(cos θ, sin θ) (5.34) dz z, cos θ = 2 (z + z ), sin θ = 2i (z z ) (5.35) dθ f(cos θ, sin θ) = i ( dz z f 2 (z + z ), ) 2i (z z ) (5.36) ()

40 I 39 f(z)/z z n (n =, 2, ) 2π dθ f(cos θ, sin θ) = 2π ( ) f(z) Res (5.37) z n z m f(z)/z ()

41 I dx x 2 + C dx dx x 4 + x 2 x 4 + dx (x 2 + a 2 ) = π (a > ) 2 4a dx sin x x C r r (π < θ < 2π) 5.6 a I(a) = dx e ax2. I(a) a 2. a dx e ax2 = 2 π a (5.38) ()

42 I (Fresnel) dx cos x 2, 5.8 I = 2π t > t = dx sin x 2 dθ + t 2 2t cos θ = 2π t 2 ( t < ) P r r P r (r < r) P P l l 2 = (r r ) 2 = r 2 ( + t 2 2t cos θ) t = r /r, θ r r I r r P P l 2 = l 2 r 2 r 2 P 5.9 a > (a) dx cos x x 2 + a 2 = π a e a. cos x cos kx (b) dx x sin x x 2 + a 2 = πe a. sin x sin kx 5. z = z f(z) f(z) = a k (z z ) k, a k = f(z) dz 2πi (z z ) k+ k= (4.2) f(z) = (z )(z + 2) z = ( z < 3) a k (??) ()

43 I f(z) = (z )(z + 2) z > 3 z z = (??) ()

44 I dx f(x). x x f(x ) 2. x δ x 2. x ɛ x x +iɛ x iɛ (ɛ ) f(z) z. < x < 2. R () + (2) x C δ+ C δ δ C δ± dz f(z) z x = { iπf(x ) C δ+ iπf(x ) C δ C δ+ C dz f(z) x δ = z x + dx f(x) + dz f(z) + dx f(x) x x C δ± z x x +δ x x C R dz f(z) z x (δ, R ). (6.) f(z) (2) R (2) ()

45 I 44 C δ+ C integrand z = x f(x ) 2πif(x ) 2 (6.) iπf(x ) C δ C integrand 2 iπf(x ) f(z) z ( arg z π) P dx f(x) x x iπf(x ) = (6.2) P dx f(x) x x = lim δ ( x δ dx f(x) + dx f(x) ) x x x +δ x x (δ ) (6.3) (principal value) δ f(z) z ( π < arg z < 2π) P dx f(x) x x + iπf(x ) = (6.4) < x < a x +δ b a dx x x (a < x < b) δ, δ ( x δ ) b dx + dx = [ln( δ ) ln(a x )] + [ln(b x ) ln δ] x x = ln b x + ln δ a x δ δ δ δ = δ ln( δ /δ) = ln( ) = iπ ( x δ a dx + b x +δ ) b dx dx = P = ln b x + iπ x x a x x a x ()

46 I 45 7 ± P a dx f(x) lim dx f(x) (6.5) a a 7 ln z arg z < 2π ()

47 I dx f(x) x x. 2. f(z) z C. < x < 2. R () + (2) (2) (5.3) x x ± iɛ (ɛ ) { 2πif(x ) (x x + iɛ) C dz ( 2 f(z) z x iɛ = dx dx f(x) x x iɛ + f(x) x x iɛ = dx (x x iɛ) (6.6) ) f(x) = iπf(z) = P dx f(x). x x + iɛ x x (6.7) x x + iɛ x iɛ (6.2) (6.6) dx f(x) x x iɛ = P dx f(x) ± iπf(x ) (6.8) x x f(z) z x x iɛ = P ± iπδ(x x ) (6.9) x x δ(x x ) b a dx f(x)δ(x x ) = f(x ) (a < x < b), (6.) dx δ(x x ) =, δ(x) = (x ) (6.) ()

48 I 47 (6.9) dx f(x) (6.9) δ δ(x x ) = ( ) 2πi x x iɛ = x x + iɛ π ɛ (6.2) (x x ) 2 + ɛ 2 δ dx δ(x x ) = π δ(x x ) = (x x, ɛ ), dx ɛ (x x ) 2 + ɛ 2 = π dy y 2 + = (ɛy = x x ). dx x 2 + = π (5.4) ()

49 I dx sin x x P dx eix x z f(z) = e iz (6.8) C dz e iz z iɛ = dx eix x iɛ = P dx eix x ± iπ (6.3) C () + (2) R + integrand z = iɛ C e iz /(z + iɛ) P dx eix x iπ = (6.4) dx sin x x = π (6.5) (6.3) ()

50 I I(σ) = dx x sin x x 2 σ 2 (6.6) x σ I - ( + k 2 )G(r, r ) = δ 3 (r r ) G(r, r ) I(σ) x = σ 6.. (6.6) I(σ) I(σ) e iσ sin z = 2i (eiz e iz ) (6.6) I (σ) = 2i I 2 (σ) = 2i dz I(σ) = I (σ) + I 2 (σ), (6.7) ze iz z 2 σ = 2 2i dz ze iz z 2 σ 2 = 2i dz (z + σ)(z σ), (6.8) dz ze iz ze iz (z + σ)(z σ) (6.9) I I 2 I, I 2 z = ±σ Res I ( σ) = e iσ 2, Res I (σ) = eiσ 2, Res I 2 ( σ) = eiσ 2, Res I 2(σ) = e iσ 2 (6.2) ()

51 I I, I 2, I z = ±σ I I 2 P I iπ 2i P I 2 + iπ 2i ( ) e iσ 2 ( ) e iσ 2 iπ 2i + iπ 2i ( ) e iσ =. (6.2) 2 ( ) e iσ =. (6.22) 2 P I = P I + P I 2 = π 2 (eiσ + e iσ ) = π cos σ (6.23) 2 σ σ + iɛ (6.24) I + (σ + iɛ) = 2πi ( ) e i(σ+iɛ) = π 2i 2 2 eiσ, (ɛ ) I (σ + iɛ) = 2πi ( ) e i(σ+iɛ) = π 2i 2 2 eiσ (ɛ ) (6.25) I(σ) = I + + I = πe iσ (ɛ ) (6.26) σ σ iɛ (6.27) I(σ) = πe iσ (6.28) (6.23) (6.23) ()

52 I 5 6. (6.4) 6.2 θ(s) θ(s) = { (s < ) (s > ) ɛ > θ(s) (a) u(s) = dx 2πi (b) u(s) = 2 + 2πi P eixs x iɛ dx eixs x 6.3 I = dx x 2 σ 2 (a) (b) (c) σ σ + iɛ σ σ iɛ ()

53 I (saddle point method) (method of steepest decent) I(s) = dz g(z)e sf(z) (7.) C s I(s) s C C f(z) C e sf(z). (7.2) g(z) e sf(z) ()

54 I n n! s s! s! = dx x s e x (7.3) 8 s s = n n! (7.3) ( )! = dx x /2 e x. 2 y = x /2, x = y 2, dx = 2ydy ( ) ( d )! = 2 dy y 2 e y2 = 2 dy e ay2 2 da a= [ ( )] d π π = 2 = da 2 a a= 2 dy e ay2 = 2 π a (5.38) s I(s) (7.3) (7.) x = sz, dx = sdz (7.3) s! = s s+ dz z s e s = s s+ dz e sf(z) (7.4) C (7.) C f(z) = ln z z, g(z) = (7.5) f(z) integrand f (z) = z, f (z) = z 2 8 s! Γ(s + ) = s! (/2)! = Γ(3/2) ()

55 I 54 z = z = f(z) z = re iθ f(z) = f() + 2! f ()(z ) 2 + = 2 (z )2 + = r2 2 e2iθ +, e sf(z) = e s exp [ s ] 2 r2 e 2iθ z = (r = ) e sf(z) θ = θ = π/2 z = θ = π s θ = θ =, π r integrand e sf(z) (7.4) r = r = (7.4) θ = s! s s+ e s dr exp ( s ) 2π 2 r2 = s s+ e s s dx e ax2 = π a (5.38) s! 2πss s e s (7.6) s (7.6) (Stiring) s s e s N ln ln N! N ln N N (7.7) N ln N N ln N s! e s s e s (e s /s! for s ) ()

56 I H ν () (s) H ν () (s) = iπ C H ν (2) (s) = dz e s iπ C 2 dz e s 2(z z), (7.8) z ν+ 2(z z) z ν+. (7.9) C C z = +i C 2 C i J ν (s) N ν (s) J ν (s) N ν (s) H () ν (s) = J ν (s) + in ν (s), (7.) H (2) ν (s) = J ν (s) in ν (s), (7.) H ν () (s), H ν (2) (s) 2 9 H ν () (s) s s H ν () (s) s (7.8) f(z) = ( z ), g(z) = 2 z z ν+ H ν () (s) (7.) z = z = Rf(z) = f(z) f (z) = f(z) f (z) = ( + z ), f (z) = 2 2 z 3 f (z) z = ±i C z = +i z = i f(z) f(z) = f(i) + 2 f (i)(z i) 2 + i i 2 r2 e 2iθ 9 ν ()

57 I 56 z i = re iθ e 2(z s z) = e sf(z) e i exp ( is2 ) r2 e 2iθ. z = i (r = ) θ r = exp ( is2 ) r2 e 2iθ θ θ = 3π/4 θ = π/4 exp ( is2 ) r2 e 2iθ = exp ( 2 ) sr2 r = s s r = g(z) g(z) g(i) = /i ν+ dz = dr e iθ dr e 3πi/4 r H ν () (s) iπ e3πi/4 e is dr exp ( 2 ) i ν+ sr2 = iπ e3πi/4 e is 2π i ν+ s dx e ax2 = π a (5.38) H ν () (s) H ν () (s) 2 [ ( πs exp i s (2ν + ) π )] 4 (7.2) θ = π/4 exp( isr 2 e 2iθ /2) r = r = (i.e. z = i) exp( isr 2 e 2iθ /2) ()

58 I s I(s) = dz g(z)e sf(z) C e sf(z). f (z) = z f (z ) =. 2. z z = re iθ z f(z) sf(z) = s [f(z ) + 2 ] f (z )(z z ) 2 = sf(z ) + 2 r2 sf (z )e 2iθ C 3. sf (z )e 2iθ = sf (z ) θ 4. θ sf (z ) z z = z g(z) g(z ) r = dr exp ( 2 ) sf (z ) r 2 = 2π sf (z ) 5. 2π I(s) sf (z ) g(z )e sf(z) e iθ ( sf (z ) ) (7.3) s (7.3) θ ()

59 I s s! (7.6) (7.7) s! N! s N 7.2 s s! 2π s ss+ e s ( s ) 7.3 s! = s! = dx x s e x (7.3) s ln x x dx e f(z) = s ln z z H ν (2) (s) 2 [ ( πs exp i s (2ν + ) π )] 4 (7.4) ()

60 I f(z) f(z) α n ( < α < α 2 < ) α n f(z) b n f(z) f(z) z = α n (n =, 2, ) b n f(z) b n f(z) z α n n= z = f() z = f() f(z) = f() + n= ( b n + ) z α n α n (8.) (8.) R n C n C n α, α 2,, α n α n+ n R n C n I n = dw f(w) 2πi C n w(w z) = ( dw f(w) 2πiz C n w z ) (8.2) w n R n I n < 2π max 2πR n f(z) z C n R n (R n z ) = max f(z) z C n R n (R n z ). (8.3) z f(z) /R n ε i.e. f(z) z f(z) = o(z) for z ε I n < (8.4) R n z n I n (8.2) w = z w = z f(z) f(z) f(z)/(w z) b k /(α k z) 2πi dw f(w) n C n w z = f(z) + Res k= z = f(z) ( f(w) w z ) w=α k = f(z) + k= b k α k z. (8.5) ()

61 I 6 2 dw f(w) 2πi C n w n ( ) f(w) = f() Res w k= I n = f(z) f() + n k= n I n (8.) w=α k = f() b k α k. (8.6) ( b k a k z ). (8.7) α k 8. cot z = cos z sin z z = (8.8) f(z) = z cot z f() = lim z f(z) = f(z) a n = nπ (n = ±, ±2, ) b n = nπ (8.) f(z) = + n= ( nπ z nπ + ). nπ n = n n= ( nπ z nπ + ) = 2z 2 nπ n= f(z) = + 2z 2 n= cot z = z + 2z n= z 2 n 2 π 2 z 2 n 2 π 2 z 2 n 2 π 2 (8.9) ()

62 I (8.9) cot z = d ln sin z dz (8.9) ln sin z = ln z + ln(z 2 n 2 π 2 ) + C = ln z + 2 n= sin z z = c ( z2 n= n 2 π 2 n= ). ) ln ( z2 + C n 2 π 2 z (sin z)/z c c = ) sin z = z ( z2 (8.) n 2 π 2 n= sin z f(z) z ( z < ) a n (n = ±, ±2, ) a n f(z) = (z a n )g(z) g(z) g(a n ) f(z) f (z) f(z) = + g (z) z a n g(z) (8.) z = a n g /g z = a n f /f f (z) f(z) = f () f() + ( + ) (8.2) z a n a n z dz f (z) f(z) = ln f(z) ln f() = zf () f() + f(z) = f() exp n= n= [ln(z a n ) ln( a n ) + zan ]. [ ] zf () ) ( ) ( zan z exp f() a n= n (8.3) (8.4) 2 ln(z 2 n 2 π 2 ) (8.9) ()

63 I sin z sin z = z + 2z ( ) n z 2 n 2 π 2 z= f(z) = z/ sin z f() 8.2 cos z cos z = n= n= [ ] z 2 (n /2)π ()

64 I ζ ζ ζ(s) = n= n s (9.) ζ(4) ζ(4) cot πz dz (9.2) z 4 N (N + /2, N /2), (N + /2, N + /2), ( N /2, N + /2), ( N /2, N /2) 4 N lim N cot πz dz =. (9.3) z 4 n z = n ( ) cot πz Res =. (9.4) n= n ( ) cot πz Res (9.4) = = 2 π n= n= z 4 z=n ( ) cot πz Res z 4 n 4 + Res ζ(4) = n= z 4 z=n = lim z n (z n) cos πz z 4 sin πz z=n = 2 ( ) cot πz z 4 z= n 4 = π 2 Res ( ) cot πz Res n= ( ) cot πz z 4 = πn 4. (9.5) z 4 z= z= (9.6) ζ(4) (9.2) z = z = 5 ( ) cot πz Res = ( ) ( ) d 4 cot πz z 4 z5 = π3 d 4 z= 4! dz4 z 4 z 24 dz z cot z (9.7) 4 z ζ(4) = π4 48 ( ) d 4 dz z cot z 4 z = π4 9. (9.8) ζ ()

65 I d 4 (z cot z) dz4 = 4(4 cot 2 z cosec 2 z + 2cosec 4 z) + z(8 cot 3 z cosec 2 z + 6 cot z cosec 4 z). lim z d 4 8 (z cot z) = dz4 5. res = π3 45. ζ ()

66 I k ζ(k) ζ(k) (k: even) 2πi cot πz dz = = 2 z k ( ) cot πz Res n= z k z=n ( ) cot πz + Res z k z= (9.9) ( ) cot πz Res = z 4 z= k! ( ) cot πz Res ( d k z k+ dz k z k cot πz z k = πn, (9.) ) k = πk d k (ξ cot ξ) k! dzk (9.) z z=n z ζ(k) = n= n k = πk 2k! d k dz (ξ cot ξ) k. (9.2) z ζ(2) = π2 4 d 2 (ξ cot ξ) dz2 = π2 z 6. (9.3) ζ ()

67 I n= ( )n /n k (k: even) 2πi dz z k sin πz (9.4) dz 2πi z k sin πz = = ( ) dz Res. (9.5) z k sin πz z=n Res ( dz ) z k sin πz ( ) dz Res z k sin πz d k = z= k! dz k z=n ( z k+ ( ) n n= n k = ( )n (n ), (9.6) πn k ) ( ) = πk d k ξ z k sin πz k! dz k sin ξ z. z (9.7) ( ) = πk d k ξ. (9.8) k! dz k sin ξ z n = k k 2 n= ( )n /n k ( ) n n= n k = πk d k 2k! dξ k ( ) ξ sin ξ z (k = even). (9.9) k = 2 ξ ( ) n n 2 n= = π2 4 ( ) d 2 ξ. (9.2) dξ 2 sin ξ z ξ sin ξ = ξ ( ξ ξ 3 /3! + ξ 5 /5! = 6 ) ξ2 + ξ4 2 = + 6 ξ2 + O(ξ 4 ). ( ) d 2 ξ = dξ 2 sin ξ z 3. ( ) n n= n 2 = π4 2. (9.2) ζ ()

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d 8. y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = π f(t)e iωt dt. : ϕ(x, y) x + ϕ(x, y) y = ( ).. . : 3. (z p, e z, sin z, sinh

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

main.dvi

main.dvi 2 f(z) 0 f(z 0 ) lim z!z 0 z 0 z 0 z z 1z = z 0 z 0 1z z z 0 1z 21 22 2 2 (1642-1727) (1646-1716) (1777-1855) (1789-1857) (1826-1866) 18 19 2.1 2.1.1 12 z w w = f (z) (2.1) f(z) z w = f(z) z z 0 w w 0

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

E F 06 00- H0 A.F. Beardon Iterations of rational functions. Springer. Q Q Q Q 6 45 8 45 H3/4 URL: http://www.math.titech.ac.jp/ kawahira/courses/5s-k

E F 06 00- H0 A.F. Beardon Iterations of rational functions. Springer. Q Q Q Q 6 45 8 45 H3/4 URL: http://www.math.titech.ac.jp/ kawahira/courses/5s-k E F 06 00- H0 : 06 4 5 Version :. Kawahira, Tomoki http://www.math.titech.ac.jp/~kawahira/courses/6s-tokuron.html pdf 4 E F E F Q E 4 5 4 Beltrami 4 9 4 6 Beltrami 5 0 Beltrami 5 7 Beltrami 3 5 4 (5 3

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp 8 5 6 i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp ii I +α 3.....................................................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

main.dvi

main.dvi 7 f(z) H f(z)dz = f(z), f (z)dz = 9 3 4 7 7.. 7. 7.. 3 f(z) D D z 7. f(z) = f () d (7.) z f(z) - =( z) = z = z Res(z) =lim!z ( z) z = f(z): (7.) 7. (7.) f(z) 7. 5 7.. f(z) z = a jz aj = r z = a r Ref(a)

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

E Riemann-Stieltjes 65   teaching.html (epsilon-delta ) 23 4 4 2 5 3 9 4 6 5 22 6 24 7 3 8 34 9 4 42 48 2 49 3 53 A Goursat 56 B 56 6 D 62 E Riemann-Stieltjes 65 http://www.math.nagoya-u.ac.jp/~yamagami/teaching/ teaching.html (epsilon-delta ) http://sss.sci.ibaraki.ac.jp/teaching/set/set25.pdf,

More information

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3) [ ] KENZOU 6 3 4 Origin 6//5) 3 a a f() = b n ( a) n c n + ( a) n n= n= = b + b ( a) + b ( a) + + c a + c ( a) + b n = f() πi ( a) n+ d, c n = f() d πi ( a) n+ () b n c n d n d n = f() d (n =, ±, ±, )

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information