海生研ニュース

Size: px
Start display at page:

Download "海生研ニュース"

Transcription

1 q q q

2 75

3

4 75

5 M/N

6 75

7

8 75

9

10 75

11

12

働く女性の母性健康管理、母性保護に関する法律のあらまし

働く女性の母性健康管理、母性保護に関する法律のあらまし 17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n

More information

取扱説明書[L-02E]

取扱説明書[L-02E] L-02E 13.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 a a a 35 a a a 36 37 a 38 b c 39 d 40 f ab c de g h i a b c d e f g h i j j q r s t u v k l mn op

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+ 5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.

More information

ミニチュアサーキットブレーカ Multi9・QOUシリーズ

ミニチュアサーキットブレーカ Multi9・QOUシリーズ Multi9QOU IEC IEC IEC IEC IEC IEC IEC AC DC DC AC DC AC DC DC AC DC A 6 A O-OFF O-OFF D D D D D D D D D D D D D D D D D D 7 IEC 8 IEC 9 IEC 0 IEC IEC IEC IEC 8 7 9 IEC A O-OFF 0 A IEC O-OFF O-OFF T

More information

2 3 4 mdv/dt = F cos(-)-mg sin- D -T- B cos mv d/dt = F sin(-)-mg cos+ L- B sin I d 2 /dt 2 = Ms + Md+ Mn FMsMd MnBTm DLg 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Hm H h

More information

コロイド化学と界面化学

コロイド化学と界面化学 x 25 1 kg 1 kg = 1 l mmol dm -3 ----- 1000 mg CO 2 -------------------------------------250 mg Li + --------------------------------1 mg Sr 2+ -------------------- 10

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm

kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm 4. 2 3 2 E n 7 2 2 2 1 2 2 3 3 3 4 1(A) 2 2 2 4 1(B) 3 6 2 4 2 4 1 2 4 2 40 2 2 2 146 kcal/mol 83kcal/mol 2 63 kcal/mol 83 kcal/mol kcal/mol nm kcal/mol nm - 3 104 138-3 91 157-2 5 98 146-6 5 112 128-6

More information

untitled

untitled NPO 2006( ) 11 14 ( ) (2006/12/3) 1 50% % - - (CO+H2) ( ) 6 44 1) --- 2) ( CO H2 ) 2 3 3 90 3 3 2 3 2004 ( ) 1 1 4 1 20% 5 ( ) ( ) 2 6 MAWERA ) MAWERA ( ) ( ) 7 6MW -- 175kW 8 ( ) 900 10 2 2 2 9 -- - 10

More information

Series

Series 5 1000 3000 5000 R 3000 1000 5000 C D 683 1000 3000 5000 Series 1000 1000 3000 5000 3000 5000 1000 3000 5000 684 685 1000 3000 5000 Series A B ØØ ØØ ØØ Ø R C D 1000 3000 5000 Series 1000 3000 5000 DXT170

More information

( )

( ) 5 60 2 1 54 ( ) 0.8 2 37 3 180 4 1 9 123654789 1 2 3 4 5 6 7 8 9 5 32 4 9 3 8 2 5 6 0 7 30 36 24 8 8 6 450 3 9 26 5 2 2016 2013-2015 14 10 ABC 24DEF BCADAB BEF A F E B D C 11 4 4 1 5 5 2 6 6 3 12 54 24

More information

(1) (2)

(1) (2) 3 3.1 3.1.1 3.1.2 (1) (2) 3.1.3 3-3.1.3.1 3.1.3.1 1 2 3.1.4 3.23.4 NATM 1980-3.1.4.1-3.1.4.2 NATM 20 1) NATM No.1235, 1983. 2) No.A-84-511984. -3.1.4.1 NATM -3.1.4.2 NATM Vp Vp 23/2882% 1983 : 0 A i X

More information

P0826-0839

P0826-0839 M MN W2 4L2-4 PV5G PV5 PCD FSFD PMB NPNAP 0E HMV 2QV Series P11 Series M MN W2 4L2-4 PV5G PV5 PMB NPNAP 0E HMV 2QV PCD FSFD M MN W2 4L2-4 PV5G PV5 PMB NPNAP 0E HMV 2QV PCD FSFD 660-C4-T10-6-3 Series N

More information

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå [email protected] II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

P ZYY.indd

P ZYY.indd / eries ø0.7ø.0 3000 ZK2 A Z Z 3000 X3000 3000 Y3000 055 3000 Z R 4 5 6 7 8 9 55 0 Y3 ZY Y3 5 6 V R 5 G H N O M MN MO E MN O 07 0 E Z 5 O 2 3 4 C C CN / eries 056 M Z 4 5 6 7 8 9 55 0 X3 ZY X3 N 5 6 V

More information

Title 大阪府立大学工学研究科年報 2011 Author(s) Editor(s) 大阪府立大学大学院工学研究科 Citation 大阪府立大学工学研究科年報. 2011 Issue Date 2012-05-01 URL http://hdl.handle.net/10466/12892 Rights http://repository.osakafu-u.ac.jp/dspace/ xperimental

More information

W32S by Sony Ericsson

W32S by Sony Ericsson W32S by Sony Ericsson W32S by Sony Ericsson z 1 2 3 4 5 Li-ion 6 7 8 9 10 q w e q w q w e 11 z > 12 13 a P P n P j P J P z z 14 15 16 17 18 19 20 21 22 23 24 25 q w!1 @1 @2 @3 @4 @5 @6 e r t y u!2!3!4!5!6!7

More information

NewBead_no45_fix_1224.indd

NewBead_no45_fix_1224.indd C O N T E N T S 1 5 11 1 adizero TAKUMI REN 2 3 4 NSSW YM-28 197651 2,200 100 300-1415 1307 0297-87-2461 300-1405 670-3 0297-60-5121 5 3 NSSW YM-55AGNSSW SM-1S NSSW SF-1NSSW L-55NSSW TW-50 197146 2,400

More information

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) (Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )

More information

layout_10.indd

layout_10.indd 猫でも分かる 電気数学講座 第 1 章第 2 章第 3 章第 章 分数の計算 1. 2. 3.. 累乗とルート 1. 2. 3.. 5. 式の計算と方程式 1. 2. 3.. 5. 6. 7. 8. 9. 三角関数 1. 2. 3.. 5. 5 6 8 9 10 13 1 17 19 22 2 27 28 30 32 3 36 39 3 6 9 53 5 57 63 67 71 第 5 章 第 6

More information

untitled

untitled e-parcel VCN-AX 3.0 for Windows April, 2017 e-parcel VCN-AX3.0 Installation Manual EP-PM-MN-0316 Copyright e-parcel Corporation All rights reserved. 1 e-parcel VCN-AX3.0 Installation Manual EP-PM-MN-0316

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

P ZR.indd

P ZR.indd øøøøø ZK2 ZQ ZB Z ZX ZM Z -X267 P ZU VQD-V 131 132 1-W 1-V ZSE2-0R-15,55 ZSE30-00-- 1-F 1-RV a 133 ZK2 ZQ Z ZB ZX ZM Z ZU P -X267 VQD-V 1 1 1 20 1 20 5 M Z K1 5 M Z K2 1 1 20 1 1 S S 20 q 10 13 15 18 20

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

MN0001 MN1 1 2 30 Evidence-Based Practice EBP EBP EBNE Evidence-Based Nursing Education 1 2 3 4 1 2 1 (2) (3) (4) (5) (6) - 100 - 10 (7) (1) 11 (2) 12 (1) 13 (2) 14 (3) 15 (4) 60 50 20 30 7 2015. Polit,

More information

都道府県別経済財政モデル(平成27年度版)_02

都道府県別経済財政モデル(平成27年度版)_02 -1 (--- 10-2 ---- 4.- 5-3 () 10 13 3 5-4 () 13 16 14-5 () 11 30-1 10 1. 1() Cw j C SNA 47 47 Chi LikL i k1 47 Chi k1 ij Cw j Ch i C SNA L ij j i SNA i j - 2 - -2 5-5 19-3 4 3 4-5 - 3 - 茨 - 4 - -1 (---

More information

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 9 LDPC sum-product 9.1 9.2 LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 0 n)) ( ) 0 (N(0 c) > N(1 c)) PROD(c 1, c 2,, c n ) := 1 (N(0

More information

MISプロトコル仕様書(中野版)

MISプロトコル仕様書(中野版) 2004 6 30 MISAUTH MBA MBA 0301 MISAUTH www.mbassoc.org 2 / 39 ...2...5...5...5 MISAUTH...5...5...5...6 MIS...6...6...7...8 MISAUTH...9 MISAUTH... 11...13 NAI...13 IPv4...14...15 IPv6...16...17...18...19...20...21...22...23...24...24...24...25...26...26...27...28...30

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

K011_鋼管杭・鋼管矢板

K011_鋼管杭・鋼管矢板 http://www.nssmc.com/ 0-071 1 el: 03-7-41 K0_03_03f, NIPPON SEEL & SUMIOMO MEAL CORPORAION ご注意とお願い本資料に記載された技術情報は 製品の代表的な特性や性能を説明するものであり 規格 の規定事項として明記したもの以外は 保証を意味するものではありません 本資料に記載されている情報の誤った使用または不適切な使用等によって生じた損害につきましては責任を負いかねますので

More information

Crossover&Fusion_vol3~4.indd

Crossover&Fusion_vol3~4.indd 11 29 11 8 2017 No.01 A B C D E F G H I J K Jaco Pastorius No.02 A B C D E F G H I J K No.03 No.04 A B C D E F G 1 A B C D E F G H 2017 11 8 11 29 No.05 No.06 ABC D E F G A BC D E F G No.07 A B C D E F

More information

1 1 MM nm M1234n M4 ABAB nab ABz AB nabna AB AB nabnan B ABz nab nabnan B 202A3B B na10nb66 AB61218 n AB106 2 UUA A AA AA e AB na B na nbna B ABz na B

1 1 MM nm M1234n M4 ABAB nab ABz AB nabna AB AB nabnan B ABz nab nabnan B 202A3B B na10nb66 AB61218 n AB106 2 UUA A AA AA e AB na B na nbna B ABz na B 1 2 3 4 5 6 7 8 9 10 10 1 1 MM nm M1234n M4 ABAB nab ABz AB nabna AB AB nabnan B ABz nab nabnan B 202A3B B na10nb66 AB61218 n AB106 2 UUA A AA AA e AB na B na nbna B ABz na B na nb n(a( B) n(a ( )n(b)n(a

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a + 6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +

More information

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ + σ P σ () n σ () n σ P ) σ ( σ P σ σ σ + u V e m w ρ w gv V V s m s ρ s gv s ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s (

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

29 4 ... 1... 1... 1... 2... 3... 4.... 4... 4... 7... 8... 8... 8... 8...12...14...14...14...16...18...18...19...21... 42...42...42....42....46....49...51....51....51... 52...52...52...53 I. I. I. I.

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

NewBead_no50_0325_fix.indd

NewBead_no50_0325_fix.indd 11 5 1 No.50 2015 April C O N T E N T S 1 2 3 4 NSSW YM-55AZ NSSW FGC-55 NSSW YM-60A NSSW YM-308LSI NSSW YM-309 1896 29 1,045 34,620 652-0884 2-1-18 078-682-3111 650-8680 1-1-3 078-371-9530 105-8315 1-14-5

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp 200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin

More information

jhs-math3_01-02ans

jhs-math3_01-02ans 因数分解 (1) 因数ある式がいくつかの式の積の形で表されるとき, かけ合わされたそれぞれの式のことをもとの式の因数という 例 ) 多項式 x 2 +( a + b)x + ab は x + a と x + b の積である x 2 +( a + b)x + ab = ( x + a)( x + b) もとの式 このとき,x + a と x + b を x 2 +( a + b)x + ab の因数という

More information

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information