木オートマトン•トランスデューサによる 自然言語処理
|
|
|
- ふじよし はぎにわ
- 9 years ago
- Views:
Transcription
1 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所
2 n
3
4
5
6 I T 1 T 2 I T 1 Pro j(i T 1 T 2 )
7
8
9 (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ
10 Σ T Σ (A) A A (0) σ A Σ (0) σ T Σ (A) σ Σ (k) σ(t 1,...,t k ) T Σ (A) t 1,...,t k T Σ (A) Σ = {σ (0),λ (0),γ (0),ξ (0),δ (0),α (1),θ (1),σ (5) } A = {β} σ (0) α (1) σ (5) γ (0) γ (0) β (0) α (1) θ (1) δ (0) ξ (0) β (0)
11
12 ε pos(t) = {ε} {i.v 1 i k,v pos(t i )}
13 ε pos(t) = {ε} {i.v 1 i k,v pos(t i )} v pos(t) t(v) t(ε) = t(3.3) =
14 ε pos(t) = {ε} {i.v 1 i k,v pos(t i )} v pos(t) t(v) t(ε) = t(3.3) = t v t 3.3 =
15 ε pos(t) = {ε} {i.v 1 i k,v pos(t i )} v pos(t) t(v) t(ε) = t(3.3) = t v t 3.3 = s t[s] v t[ ] 3.3 =
16 pos(t) = {ε} {i.v 1 i k,v pos(t i )} v pos(t) t(v) t(ε) = t(3.3) = t v t 3.3 = s t[s] v t[ ] 3.3 =
17 X = {x 1,x 2,...} X k = {x 1,...,x k } φ : X T Σ (X) (φ) = {x X φ(x) x} (φ) = {x 1,...,x k }φ(x i ) = t i φ{x 1 t 1,...,x k t k } φ : T Σ (X) T Σ (X) φ(σ(s 1,...,s k )) = σ( φ(s 1 ),..., φ(s k )) φ = {x 1 a,x 2 b,x 3 c} α α φ ( β x 2 ) γ = β b γ x 1 x 3 a c
18
19 G = (N,Σ,P,I) N I N Σ P n u P n N u T Σ (N)
20 G = (N,Σ,P,I) N I N Σ P n u P n N u T Σ (N) s p G t s,t T Σ(N) p = n u P pn u n N u T Σ (N) v pos(s) s(v) = n s[u] v = t p = p
21 G = (N,Σ,P,I) N = { } Σ = { } I = {} P
22 G = (N,Σ,P,I) N = { } Σ = { } I = {} P p 1 p 1
23 G = (N,Σ,P,I) N = { } Σ = { } I = {} P p 1 p 2 p 1 p 2
24 p 1 G = (N,Σ,P,I) N = { } Σ = { } I = {} P p 1 p 2 p 3 p 2 p 3
25 p 1 G = (N,Σ,P,I) N = { } Σ = { } I = {} P p 1 p 2 p 3 L(G) = {t T Σ G t, I} p 2 p 3
26 {, }
27
28 {,,,, } {b 2n n 0}
29 {,,,, } {b 2n n 0} 0 b 0 1 ( 0 ) 1 (x) a x x
30
31 A = (Q,Σ,F,E) Q F Q Σ k {}}{ E Q Q Σ (k) Q σ(q 1,...,q k ) q E q,q 1,...,q k Qσ Σ (k) σ (k) Σq 1,...,q k ρ pos(t) Q t(v) = σ (k) v pos(t) σ(ρ(v.1),...,ρ(v.k)) ρ(v) E
32 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E
33 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1.1)= ρ(2)= ρ(3.1.1)= ρ(3.2)= ρ(3.3.1)=
34 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= ρ(3.1.1)= ρ(3.2)= ρ(3.3.1)=
35 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= ρ(3.1)= ρ(3.1.1)= ρ(3.2)= ρ(3.3.1)=
36 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= ρ(3.1)= ρ(3.1.1)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
37 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
38 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
39 A = (Q,Σ,F,E) Q = { } F = {} Σ = { } E ρ(1)= ρ(1.1)= ρ(2)= L(A) = {t T Σ ρ(ε) Fρ} ρ(ε)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
40 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E
41 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(ε)= ρ(1)= ρ(2)= ρ(3)=
42 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(ε)= ρ(2)= ρ(3)= ρ(1.1)=
43 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(ε)= ρ(2)= ρ(3)= ρ(1.1)=
44 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(ε)= ρ(2)= ρ(3)=
45 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3)= ρ(3.2)= ρ(3.3)=
46 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.1.1)=
47 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.1.1)=
48 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)=
49 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
50 A = (Q,Σ,I,E) I Q k {}}{ E Q Σ (k) Q Q σ(q) (q 1,...,q k ) E q,q 1,...,q k Qσ Σ (k) I = {} E ρ(1)= ρ(1.1)= ρ(2)= ρ(ε)= ρ(3.1)= ρ(3.1.1)= ρ(3)= ρ(3.2)= ρ(3.3)= ρ(3.3.1)=
51 = F I σ(q 1,...,q k ) q σ(q) (q 1,...,q k ) {, } = =
52 q t t Σ (0) t N t = σ (k) (q 1,...,q k ) σ Σ q 1,...,q k N σ (0) q ε(q 1 ) q σ (k) (q 1,...,q k ) q
53 L(A) = {t t L(A)} = L(A) L(A 1 ) L(A 2 ) = L(A 1 A 2 ) L(A 1 ) L(A 2 ) = L(A 1 A 2 )
54 g n n n A = {Q,Σ,F,E,π} r = σ(q 1,...,q k ) w q E π(r) = w
55 k k
56 A 1 = {Q 1,Σ,F 1,E 1,π 1 } A 2 = {Q 2,Σ,F 2,E 2,π 2 } E = /0 (q,q ) Q 1 Q 2 σ (k) Σ σ (k) (q 1,...,q k ) w 1 q E 1 σ (k) (q 1,...,q k ) w 2 q E 2 r σ (k) ((q 1,q 1 ),...,(q k,q k )) w 1+w 2 (q,q ) E E {r} π(r) w 1 + w 2 A = {Q 1 Q 2,Σ,F 1 F 2,E,π} O( E 1 E 2 ) A 2
57 k 1 k???? 1? k
58 k =
59 k =
60 k =
61 k =
62 k =
63 k = O( E + Q k logk)
64
65 M = (Q,Σ,,I,R) Q I Q Σ R (Q Σ(X)) T ((Q X)) r R (q,σ (k) (x 1,...,x k )) u q Qσ (k) Σx 1,...,x k X u T ((Q X k )) (, (x 1,x 2,x 3 )) ((,x 1 )(,x 3 )) (, x 1 x 2 x 3 ) (,x 1 ) (,x 3 )
66 (q,σ (k) (x 1,...,x k )) u q Qσ (k) Σ q Qσ (k) Σ x 1,...,x k ( 0, x 1 x 2 ) ( 1,x 2 ) ( 2,x 2 ) ( 0,x 1 ) x 1,...,x k ( 1, ) x 1 x 2 ( 0,x 2 )
67 s r M t s,t T ((Q T Σ )) r = (q,σ(x 1,...,x k )) u v pos(s) s(v) = (q,σ(s 1,...,s k )) s[ φ(u)] v = t s 1,...,s k T ((Q X)) φ = {(q 1,x 1 ) (q 1,s 1 ),...,(q k,x k ) (q k,s k )} r = (, (x 1,x 2,x 3 )) ((,x 1 )(,x 3 )) φ = {(,x 1 ) (, ),(,x 3 ) (, )} (, ) r (, ) (, )
68 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R ( )
69 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 ( ) ( )
70 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 ( ) ( )
71 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 ( )
72 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 ( ) ( )
73 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 x 1 x 1 ( ) ( )
74 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 x 1 x 1 ( )
75 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 x 1 x 1 ( )
76 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 x 1 x 1
77 M = (Q,Σ,,I,R) Q = { } I = {} Σ = { } = { } R x 1,x 2,x 3 x 1 x 3 x 1 x 1 x 1,x 2,x 3 x 3 x 1 x 1 x 1 Tr(M) = {(s,t) T Σ T (q,s) M t,q I}
78
79
80 M = (Q,Σ,,I,R,π) r = (q,σ (k) (x 1,...,x k )) w u π(r) = w (,(x 1,x 2,x 3 )) ((,x 1 ),(,x 3 ),(,x 1 )) (,(x 1,x 2 )) ((,x 2 ),(,x 1 )) (,) 1.0 (,(x 1,x 2 )) 0.91 (,(,x 1 ),(,x 2 )) (,(x 1,x 2,x 3 )) 1.0 (,(,x 1 ),(,x 2 ),(,x 3 )) (,) (,) 0.588
81
82 A = {Q,Σ,F,E,π 1 } R = /0 σ (k) (q 1,...,q k ) w q E r (q,σ (k) (x 1,...,x k )) w σ (k) ((q 1,x 1 ),...,(q k,x k )) R R {r} π(r) w M = {Q,Σ,Σ,F,R,π} O( E ) α t 3 σ t 1 α t 4 σ t 0 β t 2
83 A = {Q,Σ,F,E,π 1 } R = /0 σ (k) (q 1,...,q k ) w q E r (q,σ (k) (x 1,...,x k )) w σ (k) ((q 1,x 1 ),...,(q k,x k )) R R {r} π(r) w M = {Q,Σ,Σ,F,R,π} O( E ) αα t 3 σσ t 1 αα t 4 σσ t 0 ββ t 2
84 M = {Q,Σ,,I,R,π 1 } P = /0 q Q x X φ((q,x)) = q (q,σ (k) (x 1,...,x k )) w t R r q w φ(t) P P {r} π(r) w G = {Q,,P,π,I} O( R max r R size(r)) (q,σ (k) (x 1,x 2 )) α (β((q 1,x 1 )) β((q 2,x 2 ))) q w α(β(q 1 ) β(q 2 ))
85 M 1 M 2 M 1 M 2 A M A M A M A M = =
86 M 1 M 2 M 1 M 2 A M A M A M A M = =
87
88 (, a ) x 1 (,b) b (,x 1 ) a (,x 1 ) a b b q a(q) q a a. b
89 (, a ) x 1 (,b) b (,x 1 ) a (,x 1 ) a b b q a(q) q a a. b {,,,, }
90 σ M f 1 M γ 2 σ β f g ξ λ δ α α a a b λ λ λ M 1 M 2
91 M 1 = {Q,Σ,Γ,I 1,R 1 }M 2 = {P,Γ,,I 2,R 2 } M 1 ΓM 2 Γ
92 M 1 = {Q,Σ,Γ,I 1,R 1 }M 2 = {P,Γ,,I 2,R 2 } M 1 ΓM 2 Γ M 1 M 2 = {P Q,Σ,,I 2 I 1,R} M 2 Σ (Q X) ((P Q) X) p Pq Q(p,(q,x i )) ((p,q),x i )R 2
93 M 1 = {Q,Σ,Γ,I 1,R 1 }M 2 = {P,Γ,,I 2,R 2 } M 1 ΓM 2 Γ M 1 M 2 = {P Q,Σ,,I 2 I 1,R} M 2 Σ (Q X) ((P Q) X) p Pq Q(p,(q,x i )) ((p,q),x i )R 2 R = {((p,q),σ (k) (x 1,...,x k )) u (q,σ (k) (x 1,...,x k )) w R 1,u Tr(p,w)} Tr(p,w) = {u T (((P Q) X)) (p,w) M 2 u}
94 M 1 = {Q,Σ,Γ,I 1,R 1 } Q = { 0, 1, 2 } I 1 = { 0 } Σ = {σ (2),α (0),β (0) } Γ = { f (2),g (1),a (0),b (0) } R 1 = {(1.1),(1.2),(1.3),(1.4)} ( 0, σ ) f x 1 x 2 ( 1,x 1 ) ( 2,x 2 ) ( 1, σ ) f x 1 x 2 ( 2,x 1 ) ( 2,x 2 ) ( 2,α) ( 2,β) a g b M 2 = {P,Γ,,I 2,R 2 } P = { 0, 1, 2 } I 2 = { 0 } Γ = { f (2),g (1),a (0),b (0) } = {γ (3),ξ (2),δ (1),λ (0) } R 2 = {(2.1),(2.2),(2.3),(2.4),(2.5)} ( 0, f x 1 ( 1, f x 1 x 2 x 2 ( 2,a) ( 2, g ) x 1 ( 2,b) ) ) λ ( 1,x 1 ) δ ( 2,x 1 ) λ ( 2,x 1 ) γ λ ξ ( 2,x 2 ) ( 2,x 2 )
95 M 1 = {Q,Σ,Γ,I 1,R 1 } Q = { 0, 1, 2 } I 1 = { 0 } Σ = {σ (2),α (0),β (0) } Γ = { f (2),g (1),a (0),b (0) } R 1 = {(1.1),(1.2),(1.3),(1.4)} M 2 = {P,Γ,,I 2,R 2 } Γ = { f (2),g (1),a (0),b (0) } {( 1,x 1 ),( 2,x 2 ),...} = {γ (3),ξ (2),δ (1),λ (0) } {(( 1, 1 ),x 1 ),(( 2, 2 ),x 2 ),...} R 2 = {(2.1),...,(2.5)} { ( 1,( 1,x 1 )) (( 1, 1 ),x 1 ), ( 2,( 2,x 2 )) (( 2, 2 ),x 2 ),...}
96 M 1 M 2 = {P Q,Σ,,I 2 I 1,R} P Q = {( 0, 0 ),( 1, 1 ),( 2, 2 ),...} I 2 I 1 = {( 0, 0 )} ( 0, σ ) f ( 0, f ) γ x 1 x 2 ( 1,x 1 ) ( 2,x 2 ) x 1 x 2 ( 1,x 1 ) λ ( 2,x 2 ) ( 1,( 1,x 1 )) (( 1, 1 ),x 1 ) ( 2,( 2,x 2 )) (( 2, 2 ),x 2 )
97 M 1 M 2 = {P Q,Σ,,I 2 I 1,R} P Q = {( 0, 0 ),( 1, 1 ),( 2, 2 ),...} I 2 I 1 = {( 0, 0 )} (( 0, 0 ), σ ) γ x 1 x 2 ( 1,( 1,x 1 )) λ ( 2,( 2,x 2 )) ( 1,( 1,x 1 )) (( 1, 1 ),x 1 ) ( 2,( 2,x 2 )) (( 2, 2 ),x 2 )
98 M 1 M 2 = {P Q,Σ,,I 2 I 1,R} P Q = {( 0, 0 ),( 1, 1 ),( 2, 2 ),...} I 2 I 1 = {( 0, 0 )} (( 0, 0 ), σ x 1 x 2 ) γ (( 1, 1 ),x 1 ) λ ( 2,( 2,x 2 )) ( 2,( 2,x 2 )) (( 2, 2 ),x 2 )
99 M 1 M 2 = {P Q,Σ,,I 2 I 1,R} P Q = {( 0, 0 ),( 1, 1 ),( 2, 2 ),...} I 2 I 1 = {( 0, 0 )} (( 0, 0 ), σ x 1 x 2 ) γ (( 1, 1 ),x 1 ) λ (( 2, 2 ),x 2 )
100 M 1 M 2 = {P Q,Σ,,I 2 I 1,R} P Q = {( 0, 0 ),( 1, 1 ),( 2, 2 ),...} I 2 I 1 = {( 0, 0 )} (( 0, 0 ), (( 1, 1 ), σ x 1 (( 2, 2 ),α) σ x 1 x 2 ) x 2 λ ) γ (( 1, 1 ),x 1 ) λ (( 2, 2 ),x 1 ) ξ (( 2, 2 ),x 2 ) (( 2, 2 ),x 2 ) (( 2, 2 ),β)... δ λ
101 Tr(M 1 ) Tr(M 2 ) Tr(M 1 ) Tr(M 2 ) = {(s,u) T Σ T (s,t) Tr(M 1 ) (t,u) Tr(M 2 )} Tr(M 1 ) Tr(M 2 ) = Tr(M 1 M 2 ) M 2 M 1 M 2 M 1 M 1 M 2
102 M (s,t) T Σ T Γ τ M (s,t) = q I (q,s) r 1M r k M t k i=1 π(r i) τ M1 M 2 (s,u) = t TΓ { τm1 (s,t) + τ M2 (t,u) } M 1 M 2 M 2
103 M 2 = =...
104
105 R (Q Σ(X)) T ((Q X)) r R (q,σ (k) (x 1,...,x k )) u R ext (Q T Σ (X)) T ((Q X)) (, ) x 1 x 2 (,x 1 ) (,x 2 )
106 M ( 0, x 1 x 2 ) ( 1, ) x 1 x 2 ( 2, ) x 1 x 2 ( 1,x 2 ) ( 0,x 2 ) ( 0,x 1 ) ( 2,x 2 ) ( 0,x 1 ) (, x 1 x 2 x 3 ) (,x 3 ) (,x 2 ) (,x 1 )
107 M 1 M 2
108
109
110
111 k
112 k k
113
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
第89回日本感染症学会学術講演会後抄録(I)
! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
日本糖尿病学会誌第58巻第1号
α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
日本糖尿病学会誌第58巻第3号
l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047
9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
日本糖尿病学会誌第58巻第2号
β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
untitled
Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-
note01
γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,
,..,,.,,.,.,..,,.,,..,,,. 2
A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
61“ƒ/61G2 P97
σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-
45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =
3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80
3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,
X-FUNX ワークシート関数リファレンス
X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +
dvipsj.4131.dvi
7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :
M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y
1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C
10_11p01(Ł\”ƒ)
q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
レイアウト 1
1 1 3 5 25 41 51 57 109 2 4 Q1 A. 93% 62% 41% 6 7 8 Q1-(1) Q2 A. 24% 13% 52% Q3 Q3 A. 68% 64 Q3-(2) Q3-(1) 9 10 A. Q3-(1) 11 A. Q3-(2) 12 A. 64% Q4 A. 47% 47% Q5 QQ A. Q Q A. 13 QQ A. 14 Q5-(1) A. Q6
ron04-02/ky768450316800035946
β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!
ATTENTION TO GOLF CLUB LAUNCHER DST DRIVER 04 05 LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER 06 07 LAUNCHER DST FAIRWAY WOOD LAUNCHER
1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b
0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000
1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4
(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2
7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
ボールねじ
A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49
E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656
SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8
P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5
日本糖尿病学会誌第58巻第7号
l l l l β μ l l l l l l α l l l l l l l μ l l l α l l l l l μ l l l l l l l l l l l l l μ l l l l l β l μ l μ l μ l μ l l l l l μ l l l μ l l μ l l l α α l μ l l μ l α l μ l α l l l μ l l l μ l l μ l
