27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$
|
|
|
- ほのか えいさか
- 9 years ago
- Views:
Transcription
1 (Naoto YOKOYAMA)1 (Kana SAITO) (Jiro MIZUSHIMA) 1 (Peters 1984) (Kida and Goto 2002) (Donbar et al 2001) ( 2002) Navier-Stokes (Nada et al 2004) Everest et al (1995) Rayleigh - 2 (1998) Skeletal (2004) / - $k-\epsilon$ Large Eddy Simulation 6 4 l nyokoyam@maildoshishaacjp
2 27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$ Dufour ( ) Soret ( ) $\rho$ $u$ $T$ $Y_{i}$ $\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho u)=0$ (1a) $\frac{\partial(\rho u)}{\partial t}+\nabla\cdot(\rho uu)=-\nabla p+\nabla\cdot\tau$ (1b) $\frac{\partial(\rho T)}{\partial t}+\nabla\cdot(\rho ut)-\nabla\cdot(\lambda\nabla T)=-\sum_{i}1\underline{1}h_{i}\omega_{i}\overline{\overline{c_{p}}}\overline{c_{\mathrm{p}}}$ (1c) $\frac{\partial(\rho Y_{i})}{\partial t}+\nabla\cdot(\rho uy_{i})-\nabla\cdot(\rho D_{i}\nabla Y_{i})=\omega_{i}$ $(1\mathrm{d})$ $p$ $R$ $W_{i}$ $p=$ $\tau$ $\rho RT\sum_{i}Y_{i}/W_{i}$ $I$ $\tau=\mu(\nabla u+$ $(\nabla u)^{t}-2/3(\nabla\cdot u)i)$ $= \sum_{i}y_{i}c_{\mathrm{p}i}$ $h_{i}$ $h_{i}=h_{i}^{0}+ \int_{t^{0}}^{t}c_{pi}(t)dt$ $\omega_{i}$ CHEMKIN(Kee et al 1996) $\lambda$ $D_{i}$ $\mu$ (Smooke et al 1991) $=A(T/T_{0})^{07}$ $\rho D_{i}=Le_{i}^{-1}(\lambda/\overline{\%})$ $\mu=pr(\lambda/\overline{c_{p}})$ V $A=258\cross 10^{-5}\mathrm{k}\mathrm{g}/(\mathrm{m}\cdot\sec)$ Prandtl $Pr=075$ Lewis 1 $Le_{i}$ 6 4 (Jones and Lindstedt 1988) $\mathrm{c}\mathrm{h}_{4}+\frac{1}{2}\mathrm{o}_{2}arrow \mathrm{c}\mathrm{o}+2\mathrm{h}_{2}$ $\mathrm{c}\mathrm{h}_{4}+\mathrm{h}_{2}\mathrm{o}arrow \mathrm{c}\mathrm{o}+3\mathrm{h}_{2}$ (2a) (2b) $\mathrm{h}_{2}+\frac{1}{2}\mathrm{o}_{2}=\mathrm{h}_{2}\mathrm{o}$ (2c) $\mathrm{c}\mathrm{o}+\mathrm{h}_{2}\mathrm{o}=\mathrm{c}\mathrm{o}_{2}+\mathrm{h}_{2}$ $(2\mathrm{d})$
3 $v_{\mathrm{c}\mathrm{h}_{4}}$ $\mathrm{m}$ $\mathrm{k}\mathrm{g}$ $\mathrm{s}\mathrm{e}\mathrm{c}$ $\ovalbox{\tt\small REJECT}$ $\mathrm{m}\mathrm{o}1$ 28 2: $A_{i}$ (a) $44\cross 10^{11}$ $126\cross 10^{5}$ $(\mathrm{b})$ $3\cross 10^{8}$ $126\cross 10^{5}$ $(\mathrm{c})$ $25\cross 10^{16}$ $167\cross 10^{5}$ $(\mathrm{d})$ $275\cross 10^{9}$ $838\cross 10^{4}$ 1: $\Omega_{j}$ Arrhenius $\Omega_{\mathrm{a}}=A_{\mathrm{a}}[\mathrm{C}\mathrm{H}_{4}]^{1/2}[\mathrm{O}_{2}]^{5/4}\exp(-E_{\mathrm{a}}/RT)$ $\Omega_{\mathrm{b}}=A_{\mathrm{b}}[\mathrm{C}\mathrm{H}_{4}]$ [H20] (3a) $\exp(-e_{\mathrm{b}}/rt)$ (3b) $\Omega_{\mathrm{c}}=A_{\mathrm{c}}[\mathrm{H}_{2}]^{1/2}[\mathrm{O}_{2}]^{9/4}[\mathrm{H}_{2}\mathrm{O}]^{-1}T^{-1}\exp(-E_{\mathrm{c}}/RT)$ (3c) $\Omega_{\mathrm{d}}=A_{\mathrm{d}}[\mathrm{C}\mathrm{O}][\mathrm{H}_{2}\mathrm{O}]\exp(-E_{\mathrm{d}}/RT)$ $(3\mathrm{d})$ $[\cdot]$ $A_{i}$ $E_{i}$ l 2 $\nu_{ij}$ (2) $j$ (1) $\omega_{i}=\sum_{j}\nu_{ij}\omega_{j}$ 6 (Lele 1992) Navier- Stokes (Baum et al 1994) 1 $d=2\cross 10^{-3}\mathrm{m}$ $Y_{\mathrm{C}\mathrm{H}_{4}0}=1$ $T_{1\mathrm{o}\mathrm{w}}=300\mathrm{K}$ $T_{1\mathrm{o}\mathrm{w}}$ $v\mathrm{c}\mathrm{h}_{4}=40\mathrm{m}/\sec$ $Y_{\mathrm{O}_{2}0}=0232$ $Y_{\mathrm{N}_{2}0}=0768$ $v_{\mathrm{a}\mathrm{i}\mathrm{r}}=4\mathrm{m}/\sec$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}}=2000\mathrm{K}$ $t<50\cross 10^{-4}\sec$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}}=2250\mathrm{K}$ $T_{\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}}$ 1 $Re\sim 8\cross 10^{3}$ Reynolds Damk\"ohler $Da\sim 4\cross 10^{7}$ 4 Runge-Kutta
4 t=48 $\cross$ 10-3sec& \acute 2 $t=48\cross 10^{-3}\sec$ $0\leq r\leq 12\cross 10^{-2}0\leq z\leq 95\cross 10^{-2}$ $5\cross 10^{-3}\leq z_{\sim}<225\cross 10^{-2}$ $J$ $z\sim 8\cross 10^{-3}\mathrm{m}$ $\cross$ $\leq z_{\sim}<4\cross 10^{-3}$ 2 ( $2(c)-(g)$ ) - l $\backslash ^{\backslash }$ ( $2(a)(b)$ ) 32 Bilger(1988) $Z= \frac{2y_{\mathrm{c}\mathrm{h}_{4}}/w_{\mathrm{c}\mathrm{h}_{4}}+(y_{\mathrm{o}_{2}0}-y_{\mathrm{o}_{2}})/w_{\mathrm{o}_{2}}+(y_{\mathrm{c}\mathrm{o}}/w_{\mathrm{c}\mathrm{o}}+y_{\mathrm{h}_{2}}/w_{\mathrm{h}_{2}})/2}{2y_{\mathrm{c}\mathrm{h}_{4}0}/w_{\mathrm{c}\mathrm{h}_{4}}+y_{\mathrm{o}_{2}0}/w_{\mathrm{o}_{2}}}$ (4) $Z= \frac{y_{\mathrm{o}_{2}0}/w_{\mathrm{o}_{2}}}{2y_{\mathrm{c}\mathrm{h}_{4}0}/w_{\mathrm{c}\mathrm{h}_{4}}+y_{\mathrm{o}_{2}0}/w_{o_{2}}}=z_{\mathrm{s}\mathrm{t}}$ (5) b $D_{i}$ $D$ 3 $Z_{\mathrm{s}\mathrm{t}}$ $\rho\frac{\partial Z}{\partial t}+\rho u\cdot\nabla Z=\nabla\cdot(\rho D\nabla Z)$ (6) $Z=Z_{\mathrm{s}\mathrm{t}}$ (6) $\rho\frac{\partial Y_{i}}{\partial t}=\frac{\rho}{le_{i}}\frac{\chi}{2}\frac{\partial^{2}y_{i}}{\partial Z^{2}}+\omega_{i}$ (7) $\chi$ $\chi=2d \nabla Z ^{2}$ $D_{i}$ 2 (6)
5 30 2; $(t=48\cross 10^{-3})(a)$ (b) (c) (d) ) (e) (f) (g) H $z$
6 31 3: 48 ) $\cross 10^{-3}$ $Z_{\mathrm{s}\mathrm{t}}$ $- \sum_{i}h_{i}\omega_{i}$ ) $(t=$ ( Lewis 1 Burke-Schumann $Z\leq Z_{\mathrm{s}\mathrm{t}}$ 0 $Y_{\mathrm{F}^{\backslash }}=\{$ $Y_{\mathrm{F}0}(Z-Z_{\mathrm{s}\mathrm{t}})/(1-Z_{\mathrm{s}\mathrm{t}})$ $Z>Z_{\mathrm{s}\mathrm{t}}$ $Y_{\mathrm{O}_{2}0}(1-Z/Z_{\mathrm{s}\mathrm{t}})$ $Z\leq Z_{\mathrm{s}\mathrm{t}}$ $Y_{\mathrm{O}_{2}}=\{$ 0 $Z>Z_{\mathrm{s}\mathrm{t}}$ $Z$ $Z\leq Z_{\mathrm{s}\mathrm{t}}$ $T-T_{1\mathrm{o}\mathrm{w}}\propto\{$ $1-Z$ $Z>Z_{\mathrm{s}\mathrm{t}}$ $t=48\cross 10^{-3}$ 4 Burke-Schumann Burke-Schumann l $=Z_{\mathrm{s}\mathrm{t}}$ 4 Z G 0 3
7 $\dot{\mathrm{b}}_{\tilde{\mathrm{t}}}$ $z$ $T_{:}$ $Y_{\mathrm{C}\mathrm{H}_{4}}$ $Y_{\mathrm{O}_{2}}$ 4: $Z$ Burke-Schumann $Z=Z_{\mathrm{s}\mathrm{t}}$ $(t=48\cross 10^{-3})$ $Y_{i}$ (7) $Z$ $\chi_{\mathrm{s}\mathrm{t}}$ } $=Z_{\mathrm{s}\mathrm{t}}$ 5 Z $\xi$ (a) (b) $\xi=0$ $r$ $n$ $\varphi$ $\varphi=\nabla\cdot u-n\cdot\nabla u\cdot n$ $5(a)$ $\xi\leq 8\cross 10^{-3}$ 2 3 $z_{\sim}<7\cross 10^{-3}$ $5(b)$ \mbox{\boldmath $\xi$}\sim $<8\cross 10^{-3}$ $5(a)10^{-2}<\xi\sim<\sim 25\cross 10^{-2}$ $5(b)$ 2 3 $10-2\sim\sim<z<225\cross 10^{-2}$ $5(a)$ 3 $6(a)$
8 $\mathfrak{c}\backslash$ 33 $Z=Z_{\mathrm{s}\mathrm{t}}$ 5: (a) (b) $(\mathrm{x}10^{3})$ (b) ( ) 6: (a) 2 up ( )down b ( )
9 34 $(r z)=(28\cross 10^{-3}2088\cross 10^{-2})(\xi\sim 1499\cross 10^{-2})$ $\eta$ $\eta=0$ 3 2 $6(b)$ 2 $\chi_{\mathrm{s}\mathrm{t}}=2d \nabla Z _{\mathrm{s}\mathrm{t}}^{2}$ $(r z)=(302\cross 10^{-3}1388\cross 10^{-2})(\xi\sim 2201\cross 10^{-2})$ $\grave{\mathrm{j}}\ovalbox{\tt\small REJECT}$ Burke-Schumann $\langle$ Lagrangian (Pitsch 2000) 3 $\Delta$ Baum M Poinsot T and Th\ evenin D (1994) Accurate boundary condition for multicomponent reactive flows J Comput Phys
10 ) ) 35 Bilger R (1988) The structure of turbulent nonpremixed flames In Twenty-Second Symposium (Intemational) on Combustion pp The Combustion Institute Pittsburgh Donbar J M Driscoll J F and Carter C D (2001) Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flame Cornbust Flame Everest D A Driscoll J F Dahm W J A and Feikema D A (1995) Images of the two-dimensional field and temperature gradients to quantify mixing rates within a non-premixed turbulent jet flame Combust Flame Jones W P and Lindstedt R P (1988) Global reaction schemes for hydrocarbon combustion Combust Flame Kee R J Rupley F M Meeks E and Miller J A (1996) Chemkin-III: Afortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics Technical Report SAND Sandia National Laboratories Kida S and Goto S (2002) Line statistics: Stretching rate of passive lines in turbulence Phys Fluids (2004) ( $\mathrm{b}$ Lele S K (1992) Compact finite difference schemes with spectral-like resolution $J$ Comput Phys Nada Y Tanahashi M and Miyauchi T (2004) Effect of turbulence characteristics on local flame structure of $\mathrm{h}_{2}$-air premixed flames J Turbulence 5 16 Peters N (1984) Laminar diffusion models in non-premixed turbulent combustion Prog Energy Combust Sci Pitsch H (2000) Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames Combust Flame Smooke M D Wess J Ruelle D Jaffe R L and Ehlers J (Eds) (1991) Reduced $\mathrm{p}\mathrm{p}$ Kinetic Mechanisms and Asymptotic Approirnations for Methane-Air Flames $1-$ $28$ Springer-Verlag (2002) (6 ) Djamrak D (1998) 2 $\mathrm{b}$ (
(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,
1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig
: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs
15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: [email protected], 2-11-16 E-mail: [email protected], 4-6-1 E-mail: [email protected],
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle
Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$
多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)
1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial
106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (
1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square
(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}
1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{
26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}
20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t
1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$
チャネル乱流における流体線の伸長
69 d(l/l )/dt y + = 15 Re τ = 18 395 Kolmogorov τ η.1.18 Kolmogorov.65τ η,min 1 Stretching Rate of Material Lines in Turbulent Channel Flow Takahiro TSUKAHARA, Faculty of Science and Technology, Tokyo
128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$
1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (
90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia
REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)
133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,
836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary
カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)
1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$
カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)
1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,
892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,
MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar
1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )
40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45
ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash
Microsoft Word - 158前刷.doc
既燃ガスに進入する未燃予混合気の燃焼について Combustion of unburnt gas mixture penetrating into burnt gas 溝渕泰寛, JAXA/ARD, 東京都調布市深大寺東町 7-44-1, [email protected] 竹野忠夫, JAXA/ARD, 東京都調布市深大寺東町 7-44-1 松山新吾, JAXA/ARD, 東京都調布市深大寺東町
110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2
1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto
音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)
1701 2010 72-81 72 Impulse Response Prediction for Acoustic Problem by FDM ( ), ) TSURU, Hideo (Nittobo Acoustic Engineering Co. Ltd.) IWATSU, Reima(Tokyo Denki University) ABSTRACT: The impulse response
広報さがみはら第1242号
LINE UP 3 1 5 6 1 NO.1242 S A G A M I H A R A 1 1 1 16 16 1 6 1 6 1 6 1 1 1 1 1 11 1 1 1 1 1 1 6 1 6 1 1 1 1 1 1 1 1 11 1 1 16 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 16 1 16 1 6 1 1 1 1 1 1
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980
Title 非線形時系列解析によるカオス性検定 ( 非線形解析学と凸解析学の研究 ) Author(s) 宮野, 尚哉 Citation 数理解析研究所講究録 (2000), 1136: 28-36 Issue Date 2000-04 URL http://hdl.handle.net/2433/63786 Right Type Departmental Bulletin Paper Textversion
$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}
Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto
Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S
Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion
空力騒音シミュレータの開発
41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house
空間多次元 Navier-Stokes 方程式に対する無反射境界条件
81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA
$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-
1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional
$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :
Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher
NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat
NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified
,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i
200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................
) [9] DNS DNS Westbrook and Dryer[10] ( ) [11] DNS Markstein Markstein Markstein Markstein Markstein [12,13] Markstein Markstein Marks
56 177 2014 251-257 Journal of the Combustion Society of Japan Vol.56 No.177 (2014) 251-257 ORIGINAL PAPER 爆発シミュレーションに特化した水素 空気系の総括反応モデルに関する理論的検討 Theoretical Analysis of Global Reaction Model of H 2 /air
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri
1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$
,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,
Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2
(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].
1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )
71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)
% 32.3 DI DI
2011 7 9 28.1 41.4 30.5 35.8 31.9% 32.3 DI 18.2 2.4 8.1 3.5 DI 9.4 32.2 0.0 25.9 2008 1 3 2 3 34.8 65.2 46.753.8 1 2 8.82.9 43.1 10 3 DI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
31, 21% 24, 17% 8, 5% 23, 16% 24, 16% 91, 62% 19, 13% 39, 27% 33, 23% 73 48 57 51 31 1 9 13.0% 7.4% 5.3% 12.5% 17.1% 13.2% 17.9% 4.5% 36.4% 56.5% 40.7% 36.8% 50.0% 67.1% 56.3% 65.8% 75.0% 26.0% 37.0%
2 DI 28 7 1 37 28 4 18 27 11 21 5 2 26 4 5 1 15 2 25 3 35 4 17 7 5 48 76 31 47 17 2 92 12 2 2 4 6 8 1 12 1 2 4 1 12 13 18 19 3 42 57 57 1 2 3 4 5 6 1 1 1 3 4 4 5 5 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5
37 27.0% 26 19.0% 74 54.0% 9 6.4% 13 9.2% 28 19.9% 26 18.4% 37 26.2%. 24 17.0% 99 69 75 59 39 1 6 4.5% 1.4% 7.7% 2.9% 25.0% 17.9% 20.8% 50.0% 41.7% 47.0% 51.4% 54.3% 61.5% 57.1% 55.6% 42.4% 50.0% 58.3%
3 DI 29 7 1 5 6 575 11 751, 13 1,1,25 6 1,251,5 2 1,51,75 1,752, 1 2,2,25 2,252,5 2,53, 3,3,5 3,5 5 1 15 2 25 3 5 6 575 12 751, 21 1,1,25 27 1,251,5 9 1,51,75 1,752, 1 2,2,25 2 2,252,5 2,53, 2 3,3,5
„´™Ÿ/’£flö
48 144 2006 206-213 Journal of the Combustion Society of Japan Vol. 48 No. 144 (2006) 206-213 ORGNAL PAPER * * An Approach to Combustion Diagnostics of Premixed Flame by Chemiluminescence of OH * and CH
カルマン渦列の消滅と再生成のメカニズム
1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
