128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Size: px
Start display at page:

Download "128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$"

Transcription

1 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle ( ) 2 $\langle 1\mathrm{X}2\rangle$ 1

2 128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

3 129 3 $\text{ }4$ Howarth 31 3 $(ru\rangle\mathrm{r}+(r\mathrm{w}\rangle_{\approx}=0$ $(1\rangle$ $UU_{X}\star WU_{\approx}$ $=-P_{X^{/\partial}}p+(\gamma\tau_{X})_{\approx}/p\gamma$ $UV_{X}+WV_{-\vee}+VW/r$ $\simeq(r^{2}\tau_{\vee})_{\approx}\mathrm{t}$ $\rho/r^{2}$ (2a) (2b) $V^{2}/_{\Gamma=}p/\rho\approx$ $(2\mathrm{c}\rangle$ $\approx$ $\tau_{\vee^{\backslash }}=\mu T_{X\mu U}=\langle V_{\sim} \wedge^{-v}/\gamma)\approx \} (2\mathrm{d}\rangle$ $zarrow\infty$ $UZ=^{\mathrm{o}}=^{w_{=}}arrow Ue0 VVarrow=V_{\iota J}\mathrm{o}$ $\}$ ; $(3\rangle$ $V/\mathrm{V}_{O}$ $\xi=vx/u\mathscr{j}$ $\eta=\sqrt{u}/vx(\gamma^{2}-a^{2})/2a$ Sto $\mathrm{k}\mathrm{e}\mathrm{s}$ $U/U_{e}$ $-:\mathrm{g}*1$ $ -:0\approx 2$ -:\alpha 4 $ :\mathrm{o}\approx 8$ $\alpha\approx$ -: 1o 5 $\psi$

4 130 $f(\eta)=\psi/_{\eta}u\overline{\mathrm{v}x}ae$ $\rangle$ $V_{1}\overline{\sim}V/$ (1)\sim (3 Keller Box (6) $f $ $1-V_{1}$ Blasius Howarth $U_{e}=U_{m}-cx$ X (5) ( $7\rangle$ 32 $V/V_{O}$ $U/U_{e}$ 4 $\xi$ (a) $ca^{\mathrm{z}}/v=12$ $\approx$ $(\Omega=VJU_{\mathcal{E}})$ 5 $V/V_{a}$ $\Omega$ (b) $ca^{2}/v=12$ $\Omega=065$ $\Omega=10$ $U/U_{e}$ 6

5 ( 131 $ca^{2}/_{\mathrm{v}}$ ($c=$ -due/ ) $\Omega$ ( $\mathrm{a}\rangle$ $\mathrm{b}\rangle$ $\Omega=065$ $\sigma$ : $rarrow\infty$ $ \vee--\sim::\omega\simeq t\mathrm{o}\omega=0\mathrm{a}\mathrm{e}$ $\}r=a$ 7 $\Omega=10$ $\Omega=065$ $\xi=25\cross 10^{2}$ $\Omega=$ $10$ $\Omega=065$ ( 6 $(\mathrm{a}\rangle)$ 8 : Detachment : Attachment 8

6 132 $ca^{2}/v$ (a) $\Omega=065$ $\mathrm{c}\rangle$ 9(a) (b) ( $\Omega\underline{-}0\mathrm{o}\mathrm{e}$ $\Omega=065066$ (b) 073 x-z $\Omega=065$ (c) $\Omega=073$ $\Omega=066$ 9 $ca^{2}/v=12$ $U_{\pi}\phi \mathrm{v}\overline{\sim}$ 1000 $a=004\mathrm{m}$ $\mathrm{d}$:detachment point $\mathrm{a}$:attachment point $\Omega=073$ $(\mathrm{b}\rangle 9 (\mathrm{c})$ $\mathrm{o}$ Brien (8)

7 $[eggs]_{\mathrm{b}\mathrm{e}\mathrm{i}}\iota$ mouth REJECT} \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{b}0\mathrm{b}\mathrm{l}\mathrm{o}\backslash \backslash \mathrm{e}\mathrm{r}$ Curle (5) $z$ 2 $d[( ()U/\partial \mathrm{z})0/2 /d\chi=v\acute{(}i^{4}2u/\partial\text{ } _{0}$ $(5\rangle$ ( $\mathrm{d}\prime U/\prime \mathit{0}_{\wedge} \rangle 0\sim(X_{S^{-}}X)^{1/}2(x_{s}$ ) (5) $x$ $( du/\partial Z)\mathrm{o}^{\sim}(X_{S}-x)^{1}/2$ 4 - $\langle$complex Turbulent Bradshaw Flows) screens $[egg3]$ Settling tank Filter $[egg4]$ $[egg1]$ Honeycomb Gauze $[egg2]$ Supporting cylinder $[egg6]$ $[egg7]$ Wind tunnel $[egg8]$ $\mathrm{c}_{\}}\cdot 1\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}$ Circular Variable speed motor $[egg9]$ $\otimes Supporting thin wire fun $\ovalbox{\tt\small control valve 10

8 mm 1200 mm 100 mm 10 $x= $ mm 3 11 $Re$ 3 $\cross 10^{4}$ $\Omega_{m}$ 15 I X V Clauser mm (9 $\rangle$ $V_{\tau}$ $\overline{x}$ $c_{f\triangleright}$ Clauser

9 Clauser $a=70$ mm \langle $\mathrm{r}\mathrm{a}\mathrm{o}^{(1\rangle}1$ $U/U_{\tau}=A\log \langle$ $U_{\tau}a/\mathrm{y})$ In $(r/a) +B$ $(6\rangle$ $A$ $B$ $\langle 12\rangle$ [ $V_{o}-\langle a/r)v\mathrm{j}/v_{\tau}=f(\mathrm{t}v_{\tau}a/\mathrm{v})(r2-a2)/2\gamma^{2}\rangle$ (7) $1V_{o}-(a/r\rangle V\rfloor/V_{\tau}=A\log \mathrm{t}(v_{\mathrm{t}}a/\mathrm{v}\rangle(r^{2}-a^{2}\rangle/2r^{2}\mathrm{j}+b$ $(8\rangle$ (9) $aarrow\infty$ $A$ $B$ (13 $\rangle$

10 : \sim 136 (14) $(U_{R0}/U_{R})\langle U1/U1\tau)=A_{1}\log (U_{\mathrm{l}\tau}a/\mathrm{V}\rangle(r-a^{\mathrm{z}/}2)2_{\Gamma^{2}} +B_{1}$ (9) $U_{1}$ $U_{1\tau}$ $U_{R}$ UR $A_{1}$ $B_{1}$ $A_{1}=42$ $B_{1}=75$ $B_{1}$ $\langle$ ( $\log$ ) (9) 13 $\rangle$ (9 $\rangle$ (9 $aarrow\infty$ $\Omega_{m}arrow 0$ (6) Olqmen Simpson ) $\rangle$ 13 (9 4 $A_{1}$ $U_{s}jq_{\tau}\cos\beta_{\text{ }}=A\log(zq\sqrt \mathrm{v})+b$ $(10\rangle$ Pierce Chandrashekhar : Coles : $q\cos(\rho_{0^{-}}\beta)/_{q_{\tau}}=a\log(zq\mathit{1}\mathrm{v})+b$ Hornung $\text{ }$ $U iq_{\tau}\langle\cos\beta 0)^{05}=A[0_{8}^{\Phi} zq_{\tau}(\cos\rho_{0})^{05}/v +B$ (11) (12) $q/_{q_{\tau}}=a\log(zq\mathit{1}v)+b$ $(13\rangle$ $\beta_{0}$ $q$ $U_{\mathfrak{i}}$ $\rangle$ 14 (a (d) $A$ $B$ (9) $\beta$

11 (d) 137 (a) Johnston (c) Coles (b) Plerce $\mathrm{b}c$ Chendrashekhar $\mathrm{b}$ Hornung $\mathrm{b}$ 14 (10)\sim (13) Johnston [ 16)] $i=x$ $y$ $(14\rangle$ $v_{ti}$ $x$ $y$ 15

12 ( 138 (a) $\Omega_{m}=0$ (b) $\mathrm{a}=1$ 16 $l=\kappa z(\kappa$ K\ arm\ an $=04\rangle$ $l=04z$ $\mathrm{a}\rangle$ $\mathrm{b}\rangle$ 16 ( $u$ $v$ $w$ $X$ $y$ $\overline{q^{2}}$ $z$ $i^{\mathrm{z}}+\overline{v^{2}}+$ $\rangle$ 2 16 (a - $\mathrm{z}/\delta\approx \mathrm{o}2\sim^{\mathrm{o}7}$ (b) 018\sim 019 \langle /2 $(17\rangle$ $U(Q^{2}/2)_{x}+W(Q^{2}/2)_{-}\sim+(U/\rho\rangle P_{X}+(W/\rho)P_{\sim}-$ $\overline{\sim}^{\overline{uw}u_{-}}\wedge+v\overline{w}r(v/r)_{\approx}+\overline{w}^{2}w_{\sim}-\overline{v}w\tau/r- (\overline{uw}u+\overline{vw}v+\overline{w^{2}}w) _{\approx}/r$ $-v (U_{\sim}-\rangle^{2}+ \cross V/r)\sim- 1^{2}+v r(u2)\sim-+\iota^{3}\{(v/_{\gamma})2\}_{\approx} /2r$ (15)

13 $U(\overline{q^{2}}/2\ranglex+W(\overline{q}^{2}/2)\sim-$ 139 $=-\overline{uw}u\overline{v}\vee^{-}wr\langle v\mathit{1}r)_{\sim} +D-\epsilon(16\rangle$ (16 $\rangle$ 1 2 $D$ $\epsilon$ 1 2 $V$ $V$ $\int$ \iota a b $=\mathrm{u}$ $\mathrm{b}\rangle$ 17 (a) ( ( $\mathrm{c}\rangle$ $U_{m}$ $\delta$ $z/\delta=04$ { $\mathrm{u}$; =1 Klebanoff 18) Klebanoff 17 (b) (c) $(\mathrm{c}j\mathrm{s}g $ 17

14 $u$ $v$ $w$ $u$ $v$ $w$ X $u^{*}$ $w$ $u^{*}$ $w$ $\psi_{\mathcal{u}^{*}\#}(k^{*})=\frac{1}{2\pi}\int-\infty\infty R_{u}*w(\gamma^{*})e^{-}d\overline{l}k^{*_{r^{*}}}\gamma*$ $(17\rangle$ $k^{*}$ $r^{*}$ $x^{*}$ \text{ }\rangle$ ( ) $x^{*}$ 2 $R_{u^{*}w}\langle $\phi_{u^{*}w}(k*)=k_{u^{*}\mathrm{w}}(k^{*})-iqu(*_{w}k^{*})$ $(18\rangle$ $K_{\text{ ^{}*}w}$ $Q_{u^{*}w}$ $\overline{u^{*}w}=\int_{\mathrm{r}}^{\varpi_{k_{y^{*}}}}w\cdot(k^{*})dk^{*}$ $(19\rangle$ $x^{=}850$ mm $u^{*}$ $w$ (a) $k^{*}$ 19 (b) 18 $u$ $u$ $w$ 1

15 141 ( $\mathrm{a}\rangle$ $\mathrm{b}\rangle$ ( 19 $u^{*}$ $w$ ( $\mathrm{a}\rangle$ 19 (b) $u^{*}$ $w$ 5

16 $\langle 2\rangle$ Nakamura Cebeci $9\rangle$ 142 $1\rangle$ $\langle 197\mathrm{g}\rangle$ ( $752- I Yamashita S Three-Dimensional Turbulent Boundary Layers IUTAM Symposium $\langle$ Berlin 1982 Ed H H Fernholz et at 1982) $177\cdot 187$ Springer-Verlag $\langle$3) Howarth L Phil Mag 7th Ser $(1951\rangle$ $\mathscr{c}\ovalbox{\tt\small REJECT} g_{\mathrm{r}}\wedge\ovalbox{\tt\small REJECT} x\not\in$ $4\rangle$ ( $37-299\langle 1971$ ) (5) Brown S N and Stewartson K Ann Rev Fluid Mech 1 (1969) $45\cdot 72$ $6\rangle$ ( T and Bradshaw P Momentum Trans $fer$ $\mathrm{a}ry$ in Bound Layers (1977) Hemisphere Pub Corp (7) Catherall D and Mangler KW J Fluid Mech 26-1 (1966) $8\rangle 0$ Brien V Phys Fluids 24-6 ( $1981\rangle$ \Rightarrow -x (1976) (10) Furuya Y and Nakamura I Trans ASME Ser $E$ $37$ (1970) ( Rao $\mathrm{g}\mathrm{n}$v Trans ASME Ser $11\rangle$ $E$ $34$ (1967) (12) Rao $\mathrm{g}\mathrm{n}$v and Keshavan NR Trans ASME $E$ Ser $39$ (1972) (13) $\mathrm{b}(1990)$ $ $ ( Nakamura I Yamashita S Watanabe T and Sawaki Y 3rd Symposium on Turbulent Shear Flows $14\rangle$ U C Davis California USA (1981) (15) $\overline{\mathrm{o}}$l\camen MS and Simpson RL Trans ASME J Fluids Eng 114 (1992) $\mathrm{d}\mathrm{g}$ (16) Lilley and Chigier NA Int J Heat Moss Transf 14 (1971) (17) $X\text{ }$ ( $1978\rangle$ (18) Klebanoff PS NACA $TR$ No 1247 (1955) 757$

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 ( 1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

TM

TM NALTR-1390 TR-1390 ISSN 0452-2982 UDC 533.6.013.1 533.6.013.4 533.6.69.048 NAL TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1390 e N 1999 11 NATIONAL AEROSPACE LABORATORY ... 1 e N... 2 Orr-Sommerfeld...

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu \mathrm{m}_{\text{ }}$ 1453 2005 85-100 85 ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu 05\sim 1 $2\sim 4\mu \mathrm{m}$ \nearrow $\mathrm{a}$

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri 35 * An Experimental Study on the Characteristic of ean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineering, Osaka Prefecture University ichio NISHIOKA, Department

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Wolfram Alpha と数学教育 (数式処理と教育)

Wolfram Alpha と数学教育 (数式処理と教育) 1735 2011 107-114 107 Wolfram Alpha (Shinya Oohashi) Chiba prefectural Funabashi-Asahi Highschool 2009 Mathematica Wolfram Research Wolfram Alpha Web Wolfram Alpha 1 PC Web Web 2009 Wolfram Alpha 2 Wolfram

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$ Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 : Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher

More information

日本糖尿病学会誌第58巻第3号

日本糖尿病学会誌第58巻第3号 l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

数理解析研究所講究録 第1940巻

数理解析研究所講究録 第1940巻 1940 2015 101-109 101 Formation mechanism and dynamics of localized bioconvection by photosensitive microorganisms $A$, $A$ Erika Shoji, Nobuhiko $Suematsu^{A}$, Shunsuke Izumi, Hiraku Nishimori, Akinori

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

web04.dvi

web04.dvi 4 MATLAB 1 visualization MATLAB 2 Octave gnuplot Octave copyright c 2004 Tatsuya Kitamura / All rights reserved. 35 4 4.1 1 1 y =2x x 5 5 x y plot 4.1 Figure No. 1 figure window >> x=-5:5;ψ >> y=2*x;ψ

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究) 1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980 Title 非線形時系列解析によるカオス性検定 ( 非線形解析学と凸解析学の研究 ) Author(s) 宮野, 尚哉 Citation 数理解析研究所講究録 (2000), 1136: 28-36 Issue Date 2000-04 URL http://hdl.handle.net/2433/63786 Right Type Departmental Bulletin Paper Textversion

More information

宋元明代数学書と「阿蘭陀符帳」 : 蘇州号碼の日本伝来 (数学史の研究)

宋元明代数学書と「阿蘭陀符帳」 : 蘇州号碼の日本伝来 (数学史の研究) $\backslash 4$ $\grave$ REJECT}$g$\mathscr{X}\mathscr{L}$ 1739 2011 128-137 128 : Chinese Mathematical Arts in the Song, Yuan and Ming Dynasties and thedutch Numerals -The Suzhou Numerals Transmitted into

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri 1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$

More information