1 IPA Hierocrypt-L1 Hierocrypt-L Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 2 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-
|
|
|
- ゆみか まつかた
- 9 years ago
- Views:
Transcription
1 Hierocrypt-L1 : Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Abstract: In this report, we address our security evaluation of Hierocrypt-L1. As a result, we found no critical security flaw during the limited period available for security evaluation. Hierocrypt-L1has not yet been evaluated enough even with our evaluation. Further evaluation results are necessary. We however show some evidences to consider Hierocrypt-L1to provide expected security at this moment. 1
2 1 IPA Hierocrypt-L1 Hierocrypt-L Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 2 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 SPN S(ubstitution: ) S ( ) S S 8 / P(ermutation: ) MDS (maximum distance separation) Hierocrypt-L1 (8 ) Square, CRYPTON, Rijndael AES Rijndael ( ) S 1. ( MDSL MDSH) 2. S 3. 2
3 DES S MDSL, MDSH S 3 GF(2 k ) k ( 10 ) b 1,...,b k f(x) = k i=1 b i x k i k 1 GF(2) ( k 1 ) GF(2 k ) 1 1: GF(2 n ) n P(x) n P(x) 2 x 2 + x +1 6 x 6 + x +1 3 x 3 + x +1 7 x 7 + x +1 4 x 4 + x +1 8 x 8 + x 6 + x 5 + x +1 5 x 5 + x x 9 + x
4 [1]( pp.10 [ ( )] (5 t 7)) 3(32) 3(32) = W (t 1) 2(32) V (t) (32) 3(32) = W (t) 2(32) V (t) (32) 1 / [4] Hierocrypt-3 [2] Hierocrypt-L Feistel Feistel 4 Z ( 1) = K Z (0) = σ 0 (Z ( 1),G (0) ) Z (1) = σ(z (0),G (1) ) Z (2) = σ(z (1),G (2) ) Z (3) = σ(z (2),G (3) ) Z (4) = σ(z (3),G (4) ) Z (5) = Z (8 5) = Z (3) Z (6) = Z (8 6) = Z (2) Z (7) = Z (8 7) = Z (1) Z (t) (t) Z 3(32) 4(32) = P (32) 1 (W (t) (t) W 1(32) 2(32) ) P (16) 1 4
5 σ (Z (t 1) 1,Z (t 1) 2,Z (t 1) 3,Z (t 1) 4 ) := Z (t 1) (Z (t) 1,Z (t) 2,Z (t) 3,Z (t) 4 ) := Z (t) (W (t 1) 1,W (t 1) 2 ) := P (Z (t 1) 3,Z (t 1) 4 ) Z (t) 3 = M 5 (W (t 1) 1 ) G (t) Z (t) 4 = M B (W (t 1) 2 ) Z (t) 1 = Z (t 1) 2 Z (t) 2 = Z (t 1) 1 F σ (Z (t 1) 2 Z (t) 3 ) 1 2 F σ S Z1(t-1) Z2(t-1) Z3(t-1) Z4(t-1) P W1(t-1) V(t) M5 G(t) M5 W2(t-1) -1 Z1(t) Z2(t) Z3(t) Z4(t) 1: Intermediate keys generation (partial) M 5 M B P 16 σ σ 0 t Z t K Z 4.1: ) Z 3 Z 4 ( ) ( (GF(2 8 )) Z 3 Z 4 W 1,W 2 K i:j 128 K 32 i j K 1:1 K 1:2 K 1:3... K 4:8 := K 128 Z( 1) 3:1 = K 3:1 Z( 1) 3:2 = K 3:2 5
6 Z( 1) 3:3 = K 3:3 Z( 1) 3:4 = K 3:4 Z( 1) 4:1 = K 4:1 Z( 1) 4:2 = K 4:2 Z( 1) 4:3 = K 4:3 Z( 1) 4:4 = K 4:4 Z(0) 3,1 = K 3:1 K 3:3 G 0:1 Z(0) 3,2 = K 3:1 K 3:2 K 3:4 G 0:2 Z(0) 3,3 = K 3:1 K 3:2 K 3:3 G 0:3 Z(0) 3,4 = K 3:2 K 3:4 G 0:4 Z(0) 4,1 = K 4:2 K 4:4 Z(0) 4,2 = K 4:1 K 4:3 Z(0) 4,3 = K 4:1 K 4:2 K 4:4 Z(0) 4,4 = K 4:1 K 4:3 K 4:4 Z(1) 3,1 = K 3:2 K 4:1 G 0:1 G 0:3 G 1:1 Z(1) 3,2 = K 3:3 K 4:2 G 0:1 G 0:2 G 0:4 G 1:2 Z(1) 3,3 = K 3:1 K 3:4 K 4:3 G 0:1 G 0:2 G 0:3 G 1:3 Z(1) 3,4 = K 3:1 K 4:4 G 0:2 G 0:4 G 1:4 Z(1) 4,1 = K 3:1 G 0:2 G 0:4 Z(1) 4,2 = K 3:2 G 0:1 G 0:3 Z(1) 4,3 = K 3:2 K 3:3 K 4:1 G 0:2 G 0:3 G 0:4 Z(1) 4,4 = K 3:1 K 3:4 K 4:4 G 0:1 G 0:2 G 0:3 W (1)(= W (7)) 1,1 = K 3:1 K 3:2 K 4:1 G 0:1 G 0:2 G 0:3 G 0:4 G 1:1 W (1)(= W (7)) 1,2 = K 3:2 K 3:3 K 4:2 6
7 G 0:2 G 0:3 G 0:4 G 1:2 W (1)(= W (7)) 1,3 = K 3:1 K 3:2 K 3:3 K 3:4 K 4:1 K 4:3 G 0:1 G 0:4 G 1:3 W (1)(= W (7)) 1,4 = K 3:4 G 0:1 G 0:3 G 0:4 G 1:4 W (1)(= W (7)) 2,1 = K 3:2 K 3:3 K 3:4 K 4:1 K 4:3 G 0:1 G 0:2 G 1:3 W (1)(= W (7)) 2,2 = K 3:2 K 3:4 G 0:4 G 1:4 W (1)(= W (7)) 2,3 = K 3:1 K 3:3 G 0:1 G 1:1 W (1)(= W (7)) 2,4 = K 3:1 K 3:2 K 3:3 K 3:4 K 4:2 K 4:4 G 0:1 G 0:4 G 1:2 Z(2) 3,1 = K 3:3 K 3:4 K 4:3 G 0:2 G 0:3 G 1:1 G 1:3 G 2:1 3,2 = K 3:1 K 3:3 K 3:4 K 4:1 K 4:2 G 0:3 G 0:4 G 1:1 G 1:2 G 1:4 G 2:2 3,3 = K 3:2 K 3:4 K 4:2 K 4:3 G 0:4 G 1:1 G 1:2 G 1:3 G 2:3 3,4 = K 3:2 K 3:3 K 3:4 K 4:2 G 0:1 G 0:2 G 1:2 G 1:4 G 2:4 4,1 = K 3:1 K 3:3 K 4:2 K 4:4 G 0:1 G 1:2 G 1:4 4,2 = K 3:1 K 3:2 K 3:4 K 4:1 K 4:3 G 0:2 G 1:1 G 1:3 4,3 = K 3:1 K 3:2 K 3:4 K 4:1 K 4:2 K 4:3 K 4:4 G 0:2 G 1:2 G 1:3 G 1:4 4,4 = K 3:3 K 4:1 K 4:2 K 4:3 K 4:4 G 0:1 G 0:2 G 0:4 G 1:1 G 1:2 G 1:3 W (2)(= W (6)) 3,1 = K 3:1 K 3:4 K 4:2 K 4:3 K 4:4 G 0:1 G 0:2 G 0:3 G 1:1 G 1:2 G 1:3 G 1:4 G 2:1 3,2 = K 3:2 K 3:3 K 4:2 K 4:3 G 0:2 G 0:3 G 0:4 G 1:2 G 1:3 G 1:4 G 2:2 3,3 = K 3:1 K 4:1 K 4:4 G 0:2 G 0:4 G 1:1 G 1:4 G 2:3 3,4 = K 3:2 K 3:4 K 4:1 K 4:3 K 4:4 G 0:4 G 1:1 G 1:3 G 1:4 G 2:4 7
8 4,1 = K 3:3 K 4:1 K 4:2 G 0:1 G 0:2 G 0:4 G 1:1 G 1:2 G 2:3 4,2 = K 3:1 K 4:4 G 0:2 G 0:4 G 1:4 G 2:4 4,3 = K 3:2 K 4:1 G 0:1 G 0:3 G 1:1 G 2:1 4,4 = K 3:2 K 4:1 K 4:4 G 0:1 G 0:3 G 1:1 G 1:4 G 2:2 Z(3) 3,1 = K 3:4 K 4:1 K 4:2 K 4:3 G 0:1 G 0:3 G 0:4 G 1:2 G 1:3 G 2:1 G 2:3 G 3:1 3,2 = K 3:1 K 3:3 K 4:1 K 4:3 G 0:1 G 1:3 G 1:4 G 2:1 G 2:2 G 2:4 G 3:2 3,3 = K 3:2 K 3:3 K 3:4 K 4:1 G 0:1 G 0:2 G 1:4 G 2:1 G 2:2 G 2:3 G 3:3 3,4 = K 3:3 K 3:4 K 4:1 K 4:2 K 4:4 G 0:2 G 0:3 G 1:1 G 1:2 G 2:2 G 2:4 G 3:4 4,1 = K 3:1 K 3:2 K 4:1 G 0:1 G 0:2 G 0:3 G 0:4 G 1:1 G 2:2 G 2:4 4,2 = K 3:2 K 3:3 K 4:2 G 0:2 G 0:3 G 0:4 G 1:2 G 2:1 G 2:3 4,3 = K 3:1 K 3:2 K 3:3 K 4:2 G 0:3 G 1:2 G 2:2 G 2:3 G 2:4 4,4 = K 3:3 K 4:1 K 4:2 K 4:4 G 0:1 G 0:2 G 0:4 G 1:1 G 1:2 G 1:4 G 2:1 G 2:2 G 2:3 W (3)(= W (5)) 3,1 = K 3:1 K 3:2 K 3:4 K 4:2 K 4:3 G 0:2 G 1:1 G 1:2 G 1:3 G 2:1 G 2:2 G 2:3 G 2:4 G 3:1 3,2 = K 3:1 K 3:2 K 4:1 K 4:2 K 4:3 G 0:1 G 0:2 G 0:3 G 0:4 G 1:2 G 1:3 G 1:4 G 2:2 G 2:3 G 2:4 G 3:2 3,3 = K 3:1 K 3:4 K 4:1 K 4:2 G 0:1 G 0:2 G 0:3 G 1:2 G 1:4 G 2:1 G 2:4 G 3:3 3,4 = K 3:4 G 0:1 G 0:3 G 0:4 G 1:4 G 2:1 G 2:3 G 2:4 G 3:4 4,1 = K 3:2 K 3:4 K 4:2 G 0:4 G 1:1 G 1:2 G 1:4 G 2:1 G 2:2 G 3:3 4,2 = K 3:2 K 3:3 K 3:4 K 4:2 G 0:1 G 0:2 G 1:2 G 1:4 G 2:4 G 3:4 4,3 = K 3:3 K 3:4 K 4:3 8
9 G 0:2 G 0:3 G 1:1 G 1:3 G 2:1 G 3:1 4,4 = K 3:1 K 3:2 K 3:3 K 4:3 K 4:4 G 0:3 G 1:1 G 1:3 G 2:1 G 2:4 G 3:2 Z(4) 3,1 = K 3:2 K 4:1 K 4:3 G 0:1 G 0:3 G 1:1 G 1:3 G 1:4 G 2:2 G 2:3 G 3:1 G 3:3 G 4:1 3,2 = K 4:1 G 1:1 G 2:3 G 2:4 G 3:1 G 3:2 G 3:4 G 4:2 3,3 = K 3:1 K 4:2 G 0:2 G 0:4 G 1:1 G 1:2 G 2:4 G 3:1 G 3:2 G 3:3 G 4:3 3,4 = K 3:1 K 3:2 K 3:4 K 4:1 K 4:2 K 4:3 G 0:2 G 1:2 G 1:3 G 2:1 G 2:2 G 3:2 G 3:4 G 4:4 4,1 = K 3:1 K 3:4 K 4:2 K 4:3 K 4:4 G 0:1 G 0:2 G 0:3 G 1:1 G 1:2 G 1:3 G 1:4 G 2:1 G 3:2 G 3:4 4,2 = K 3:2 K 3:3 K 4:2 K 4:3 G 0:2 G 0:3 G 0:4 G 1:2 G 1:3 G 1:4 G 2:2 G 3:1 G 3:3 4,3 = K 3:1 K 3:2 K 4:3 K 4:4 G 0:1 G 0:2 G 0:3 G 0:4 G 1:3 G 2:2 G 3:2 G 3:3 G 3:4 4,4 = K 3:1 K 4:2 K 4:4 G 0:2 G 0:4 G 1:1 G 1:2 G 1:4 G 2:1 G 2:2 G 2:4 G 3:1 G 3:2 G 3:3 4.2 (1) (2) Hierocrypt-L1 4.2: (K (1),K (2),K (3),K (4) ) Z Z t, 1 t Z (t) t, 1 t 4 9
10 V (t) = F σ ( ) Z (t) 1 = 3 4 V (t) Z (t) 2 = 1 Z (t) 3 = 2 V (t) Z (t) 4 = 3 V (t) 4.3: (K (5),K (6),K (7) ) Z (t 1), 5 t 8 Z (t 1) Z (t 1) 1 = Z (t 1) 3 Z (t 1) 2 F σ (Z (t 1) 1 Z (t 1) 3 ) (1) 2 = M 5 (G (t 1) Z (t 1) 3 ) F σ (Z (t 1) 1 Z (t 1) 3 ) (2) 3 = M B (Z (t 1) 4 ) F σ (Z (t 1) 1 Z (t 1) 3 ) (3) 4 = Z (t 1) 1 M B (Z (t 1) 4 ) (4) x Y (t 1) Y (t 1) 4 = MB 1(K(t) 4 x) Y (t 1) 3 = M5 1 (x M 5 (G (t 1) ) ) Y (t 1) 2 = x Y ) Y (t 1) 1 = x Y (t 1) x x Y (t 1) Z (t 1) = Y (t 1) (1) (4) F σ (Y (t 1) 1 Y (t 1) 3 )=Y (t 1) Y Y F σ (1)F σ (2)x Y F σ (1) (4) Z 1 DES MISTY
11 SAFER+ 256 (minor flaw ) [5] Magenta [6] [7] Hierocrypt-L1 Z (t) = Z (8 t), 5 t 7, 1 t 4 Z (t 1),Z (t), 5 t 7 Z (t 1),Z (t) K (8 t) K (9 t) V (t) 1: V (t) = V (9 t), 5 t 7 4.4: 1 = K (9 t) 1 K (9 t) 2, 5 t 7 (5 t 7) K (9 t) 1 K (9 t) 2 = Z (9 t 1) 1 Z (9 t) 3 = Z (8 (9 t 1)) 1 Z (8 (9 t)) 3 = Z (t) 1 Z (t 1) 3 1 = Z (t) 1 Z (t 1) 3 4.5: 1 2 K (t 1) 4 = Z (t) 3 Z (t 1) 4, 2 t 4 11
12 (2 t 4) 1 = Z (t 1) 1 V (t) = Z (t) 2 2 = Z (t) 3 V (t) = Z (t) 3 Z (t) 2 Z (t 1) 1 4 = Z (t 1) 2 Z (t) 4 = Z (t) 1 Z (t) 4 K (t 1) 4 = Z (t 1) 1 Z (t 1) K (t 1) 4 = Z (t) 2 Z (t) 3 Z (t) 2 Z (t 1) 1 Z (t 1) 1 Z (t 1) 4 = Z (t) 3 Z (t 1) 4 Z 3 Z 4 (Z (2) 3 Z (1) 4 ) 1 = K 3:1 K 3:3 K 3:4 K 4:3 G 0:3 G 0:4 G 1:1 G 1:3 G 2:1 (Z (2) 3 Z (1) 4 ) 2 = K 3:1 K 3:2 K 3:3 K 3:4 K 4:1 K 4:2 G 0:1 G 0:4 G 1:1 G 1:2 G 1:4 G 2:2 (Z (2) 3 Z (1) 4 ) 3 = K 3:3 K 3:4 K 4:1 K 4:2 K 4:3 G 0:2 G 0:3 G 1:1 G 1:2 G 1:3 G 2:3 (Z (2) 3 Z (1) 4 ) 4 = K 3:1 K 3:2 K 3:3 K 4:2 K 4:4 G 0:3 G 1:2 G 1:4 G 2:4 (Z (3) 3 Z (2) 4 ) 1 = K 3:1 K 3:3 K 3:4 K 4:1 K 4:3 K 4:4 G 0:3 G 0:4 G 1:3 G 1:4 G 2:1 G 2:3 G 3:1 (Z (3) 3 Z (2) 4 ) 2 = K 3:2 K 3:3 K 3:4 G 0:1 G 0:2 G 1:1 G 1:4 G 2:1 G 2:2 G 2:4 G 3:2 (Z (3) 3 Z (2) 4 ) 3 = K 3:1 K 3:3 K 4:2 K 4:3 K 4:4 G 0:1 G 1:2 G 1:3 G 2:1 G 2:2 G 2:3 G 3:3 (Z (3) 3 Z (2) 4 ) 4 = K 3:4 K 4:3 G 0:1 G 0:3 G 0:4 G 1:3 G 2:2 G 2:4 G 3:4 (Z (4) 3 Z (3) 4 ) 1 = K 3:1 K 4:3 G 0:2 G 0:4 G 1:3 G 1:4 G 2:3 G 2:4 G 3:1 G 3:3 G 4:1 (Z (4) 3 Z (3) 4 ) 2 = K 3:2 K 3:3 K 4:1 K 4:2 G 0:2 G 0:3 G 0:4 G 1:1 G 1:2 G 2:1 G 2:4 G 3:1 G 3:2 G 3:4 G 4:2 (Z (4) 3 Z (3) 4 ) 3 = K 3:2 K 3:3 12
13 G 0:2 G 0:3 G 0:4 G 1:1 G 2:2 G 2:3 G 3:1 G 3:2 G 3:3 G 4:3 (Z (4) 3 Z (3) 4 ) 4 = K 3:1 K 3:2 K 3:3 K 3:4 K 4:3 K 4:4 G 0:1 G 0:4 G 1:1 G 1:3 G 1:4 G 2:3 G 3:2 G 3:4 G 4:4 t SPN ( ) F LOKI89 ( ) [8] DES [9] Hierocrypt-L1 DES F ( ) Hierocrypt-L1 1 ( P A K (1) A = P B K (1) B ) S ( A,K(t) B ) ( ) S SPN DES DES F P A,P B K (1) A,K (1) B 4.6: Z (1) A,Z (1) B Z (t) A,Z (t) B, 2 t 4 ( x ( ) 0 0 ) Case 1:( ) Case 2:( ) Z (0) = 000x, 000x, 000x, x0x0 Z (1) = 000x, 000x, 000x, x0x0 Z (2) = 000x, 000x, 000x, x0x0 Z (3) = 000x, 000x, 000x, x0x0 Z (4) = 000x, 000x, 000x, x0x0 Z (0) = 0000, 000x, 0000,x0xx Z (1) = 000x, 0000, 000x, 000x 13
14 Z (2) = 0000, 000x, 0000,x0xx Z (3) = 000x, 0000, 000x, 000x Z (4) = 0000, 000x, 0000,x0xx Case 3:( Case 2 ) Z (0) = 000x, 0000, 000x, 000x Z (1) = 0000, 000x, 0000,x0xx Z (2) = 000x, 0000, 000x, 000x Z (3) = 0000, 000x, 0000,x0xx Z (4) = 000x, 0000, 000x, 000x 5 Hierocrypt-L1 Hierocrypt-L1 SPN Square[10] Rijndael[11] CRYPTON [12] Square [10] truncated-differential[13] Hierocrypt-L1 Square truncated-differential Hierocrypt-L1 1. ( ) 2. S (8 ) 3. MDSL(GF(2 8 ) ) 4. MDSH( ) S GF(2 8 ) S S MDSL ( ) S MDSL S ( ) 5.1 Hierocrypt-L1 S S 2 14
15 S S Hierocrypt-L1 S s(x) =Add(Power(Perm(x))) Perm() GF(2 8 ) Power() Add() Add 0x11 x =0 S 7 s(perm 1 (x)) x ( GF(2 8 ) ) S S x 8 + x 6 + x 5 + x +1 GF(2 8 ) 10 GF(2 8 ) F (x) = 7 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
16 + 195 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 254 ( MDSH MDSL) GF(2 8 ) S GF(2 k ) GF(2 k ) S GF(2 k ),k <8 S 8 GF(2 k ) x (GF2) 8 y GF(2 k ) φ S φ n φ : x y =(y k 1 y k 2...y 0 ) y i = parity(x, mask i ) φ mask i φ d GF(2 k ) ( d ) GF(2 k ) f bias (φ,f) =#{x f(φ(x)) = φ(s(x))} 2 8 /2 k (5) GF(2 2 ) 8 GF(2 2 ) 0 mask0, mask GF(2 2 ) d ( 88/256=24/256+1/4 bias = 24/256)9 φ(x) φ(s(x)) dist 16
17 4 4 dist[a][b] φ(x) =a φ(s(x)) = b x mask = (7, 233),f(x) =x +3 dist = {10, 16, 10, 28, 12, 18, 24, 10, 24, 18, 12, 10, 18, 12, 18, 16) mask = (7, 233),f(x) =2x +3 dist = {10, 16, 10, 28, 12, 18, 24, 10, 24, 18, 12, 10, 18, 12, 18, 16) mask = (7, 238),f(x) =x +1 dist = {10, 28, 10, 16, 18, 16, 18, 12, 24, 10, 12, 18, 12, 10, 24, 18) mask = (7, 238),f(x) =3x +1 dist = {10, 28, 10, 16, 18, 16, 18, 12, 24, 10, 12, 18, 12, 10, 24, 18) mask = (121, 129), f(x) =x +3 dist = {12, 12, 12, 28, 14, 18, 20, 12, 16, 18, 16, 14, 22, 16, 16, 10) mask = (121, 248), f(x) =x +1 dist = {12, 28, 12, 12, 22, 10, 16, 16, 16, 14, 16, 18, 14, 12, 20, 18) mask = (129, 248), f(x) =x +1 dist = {12, 28, 12, 12, 22, 10, 16, 16, 14, 12, 18, 20, 16, 14, 18, 16) mask = (233, 238), f(x) =x +1 dist = {10, 28, 16, 10, 18, 16, 12, 18, 12, 10, 18, 24, 24, 10, 18, 12) mask = (233, 238), f(x) =2x +1 dist = {10, 28, 16, 10, 18, 16, 12, 18, 12, 10, 18, 24, 24, 10, 18, 12) ( 88/256=24/256+1/4)6 mask = (7, 233),f(x) =x 2 +3 dist = (10, 16, 10, 28, 12, 18, 24, 10, 24, 18, 12, 10, 18, 12, 18, 16) mask = (7, 238),f(x) =2x 2 +1 dist = (10, 28, 10, 16, 18, 16, 18, 12, 24, 10, 12, 18, 12, 10, 24, 18) 17
18 mask = (86, 147),f(x) =x 2 dist = (24, 12, 14, 14, 12, 24, 14, 14, 14, 14, 16, 20, 14, 14, 20, 16) mask = (86, 197),f(x) =2x 2 dist = (24, 14, 14, 12, 14, 16, 20, 14, 14, 20, 16, 14, 12, 14, 14, 24) mask = (147, 197),f(x) =3x 2 dist = (24, 14, 12, 14, 14, 16, 14, 20, 12, 14, 24, 14, 14, 20, 14, 16) mask = (233, 238),f(x) =3x 2 +1 dist = (10, 28, 16, 10, 18, 16, 12, 18, 12, 10, 18, 24, 24, 10, 18, 12) ( 94/256=30/256+1/4)6 mask = (7, 233, ),f(x) =x 3 +2x 2 +2x +3 dist = (10, 16, 10, 28, 12, 18, 24, 10, 24, 18, 12, 10, 18, 12, 18, 16) mask = (7, 233, ),f(x) =3x 3 +3x 2 +1x +3 dist = (10, 16, 10, 28, 12, 18, 24, 10, 24, 18, 12, 10, 18, 12, 18, 16) mask = (7, 238, ),f(x) =x 3 +3x 2 + x +1 dist = (10, 28, 10, 16, 18, 16, 18, 12, 24, 10, 12, 18, 12, 10, 24, 18) mask = (7, 238, ),f(x) =3x 3 + x 2 +3x +1 dist = (10, 28, 10, 16, 18, 16, 18, 12, 24, 10, 12, 18, 12, 10, 24, 18) mask = (233, 238, ),f(x) =x 3 +2x 2 + x +1 dist = (10, 28, 16, 10, 18, 16, 12, 18, 12, 10, 18, 24, 24, 10, 18, 12) GF(2 3 ) mask = (233, 238, ),f(x) =2x 3 + x 2 +2x +1 dist = (10, 28, 16, 10, 18, 16, 12, 18, 12, 10, 18, 24, 24, 10, 18, 12) 8 GF(2 3 ) 0 mask0, mask1, mask GF(2 3 ) d 18
19 ( 57/256=25/256+1/8)7 mask = (40, 99, 215),f(x) =2x +7 mask = (61, 83, 185),f(x) =3x +4 mask = (61, 185, 234), f(x) =5x +6 mask = (83, 110, 234), f(x) =7x +4 mask = (99, 180, 255), f(x) =2x +1 mask = (110, 132, 185), f(x) =7x +6 mask = (132, 215, 234), f(x) =3x +7 ( 58/256=26/256+1/8)2 mask = (1, 7, 222),f(x) =4x 2 +3 mask = (7, 217, 223),f(x) =x 2 +7 ( 66/256=34/256+1/8)5 mask = (7, 27, 238),f(x) =7x 3 +5x 2 + x +3 mask = (7, 238, 245),f(x) =3x 3 +7x 2 + x +5 mask = (27, 28, 245),f(x) =6x 3 +4x 2 + x +5 mask = (28, 233, 238),f(x) =x 3 + x 2 + x +2 mask = (233, 242, 245),f(x) =5x 3 +3x 2 + x +5 65/256 : mask = (7, 117, 238),f(x) =7x 4 +2x 3 +6x 2 +6x +1 62/256 : mask = (1, 54, 239),f(x) =7x 5 +6x 4 +6x 3 +2x 2 +3x +5 62/256 : mask = (1, 55, 238),f(x) =3x 5 +2x 4 +4x 3 +5x 2 +4x +3 62/256 : mask = (1, 60, 185),f(x) =x 5 +4x 3 + x 2 +7x +7 62/256 : mask = (1, 61, 185),f(x) =6x 5 +2x 4 + x 3 +4x +5 MDSL MDSH Hierocrypt-L1 MDSL MDSH MDSL 4 S MDSH 19
20 S ( φ) MDSH S ( )-(S )-(MDSH)-( )-(S ) MDSL (MDS ) 5.2 Hierocrypt-L1 S Hierocrypt-L1 S MDSH HDSL x 8 + x 6 + x 5 + x +1 S ( 256 ) S ( ) 5.1: S 256 n n 1 n S t 1. t GF(2 8 ) t =2, 3, 4 5 S S 20
21 S :S(67 16 )=67 16 S OFB : 30738= ( 16 ): 109( ) e ec 8d b b6 26 3d 3e f9 cb 14 9d f0 ea db b 33 c9 8a 4a 57 b1 d4 93 f8 8f 0a ce 35 ed dc cd cf 45 0d e9 4c bd a6 e3 76 b7 2b f7 1d 5f 0f b a4 0e 5d c0 ad 5c fb 4f 1e 19 7a 7d b fc 16 f5 0c d d f df a f1 15 2e ac d6 da e4 36 de 97 b (= 3 47) c e7 3a 72 cc 6e 9e c5 c7 f2 dd ba 90 2c 8c ef 2a 4d c 95 e6 28 b9 86 4b e b c4 eb d9 53 9a b3 f3 c2 a bf 05 8e 3f d8 a b 18 c6 e f 1f c d7 ae f4 a5 6d fa b4 bb ff a0 52 b5 54 7c d5 e1 31 5a d a7 be 7b 3b a c a 5e 51 9f 7e af 5b 08 bc fe aa ee 62 1a 2f 17 e8 24 c3 10 1c b2 e a2 47 fd ab f c ca 6c 3 92 d1 d Hierocrypt-L1 SPN Hierocrypt-L1 S Hierocrypt-L1 Hierocrypt-L1 21
22 [1] : Hierocrypt-L1, available at security/hierocrypt/. [2] : Hierocrypt-3, available at security/hierocrypt/. [3] Specification on a Block Cipher: Hierocrypt-L1, available at rdc/security/hierocrypt/. [4],,,,, Hierocrypt-3 Hierocrypt-L1 /, ISEC ,, [5] J. Kelsey, B. Schneier, Key Schedule Weakness in SAFER+, Second AES Candidate Conference, 1999, available at [6] E. Biham, A. Biryukov, N. Ferguson, L. Knudsen, B. Schneier, A. Shamir, Cryptanalysis of Magenta, Second AES Candidate Conference, 1999, available at [7] A. Biryukov, D. Wagner, Slide Attacks, Fast Software Encryption, 6th International Workshop, FSE 99, Proceedings, Lecture Notes in Computer Science Vol. 1636, Springer-Verlag, [8] L. Knudsen, Cryptanalysis of LOKI, Advances in Cryptology, ASIACRYPT 91, Lecture Notes in Computer Science Vol. 739, Springer-Verlag, [9] C. H. Meyer, S. M. Matyas, Cryptography: A New Dimension in Coputer Data Security, New York: John Wiley & Sons, [10] J. Daemen, L. Knudsen, V. Rijmen, The Block Cipher Square, Fast Software Encryption, 4th International Workshop, FSE 97, Proceedings, Lecture Notes in Computer Science Vol. 1267, Springer-Verlag, [11] J. Daemen, V. Rijmen, AES Proposal: Rijndael, available at kuleuven.ac.be/~rijmen/rijndael/index.html [12] C. H. Lim, A Revised Version of Crypton -Crypton V1.0, Fast Software Encryption, 6th International Workshop, FSE 99, Proceedings, Lecture Notes in Computer Science Vol. 1636, Springer-Verlag, [13] L. Knudsen, T. Berson, Truncated Differentials of SAFER, Fast Software Encryption, third International Workshop, Proceedings, Lecture Notes in Computer Science Vol. 1039, Springer-Verlag,
23 Z1(-1) Z2(-1) Z3(-1) Z4(-1) V(0) M5 G(0) MB Z1(0) Z2(0) Z3(0) Z4(0) Note: M5 = MB -1 V(1) P W1(0) M5 G(1) MB W2(0) Z1(1) Z2(1) Z3(1) Z4(1) Z1(7) Z2(7) Z3(7) Z4(7) W1(1) P W2(1) W1(7) P -1 W2(7) V(2) M5 G(2) MB V(7) MB G(6) M5 Z1(2) Z2(2) Z3(2) Z4(2) Z1(6) Z2(6) Z3(6) Z4(6) W1(2) P W2(2) W1(6) P -1 W2(6) V(3) M5 G(3) MB V(6) MB G(5) M5 Z1(3) Z2(3) Z3(3) Z4(3) Z1(5) Z2(5) Z3(5) Z4(5) W1(3) P W2(3) W1(5) P -1 W2(5) V(4) M5 G(4) MB V(5) MB G(4) M5 Z1(4) Z2(4) Z3(4) Z4(4) Z1(4) Z2(4) Z3(4) Z4(4) 2: Intermediate keys generation (whole structure) 23
24 2: Evaluated S box (Hierocrypt-L1) 0x07, 0xFC, 0x55, 0x70, 0x98, 0x8E, 0x84, 0x4E 0xBC, 0x75, 0xCE, 0x18, 0x02, 0xE9, 0x5D, 0x80 0x1C, 0x60, 0x78, 0x42, 0x9D, 0x2E, 0xF5, 0xE8 0xC6, 0x7A, 0x2F, 0xA4, 0xB2, 0x5F, 0x19, 0x87 0x0B, 0x9B, 0x9C, 0xD3, 0xC3, 0x77, 0x3D, 0x6F 0xB9, 0x2D, 0x4D, 0xF7, 0x8C, 0xA7, 0xAC, 0x17 0x3C, 0x5A, 0x41, 0xC9, 0x29, 0xED, 0xDE, 0x27 0x69, 0x30, 0x72, 0xA8, 0x95, 0x3E, 0xF9, 0xD8 0x21, 0x8B, 0x44, 0xD7, 0x11, 0x0D, 0x48, 0xFD 0x6A, 0x01, 0x57, 0xE5, 0xBD, 0x85, 0xEC, 0x1E 0x37, 0x9F, 0xB5, 0x9A, 0x7C, 0x09, 0xF1, 0xB1 0x94, 0x81, 0x82, 0x08, 0xFB, 0xC0, 0x51, 0x0F 0x61, 0x7F, 0x1A, 0x56, 0x96, 0x13, 0xC1, 0x67 0x99, 0x03, 0x5E, 0xB6, 0xCA, 0xFA, 0x9E, 0xDF 0xD6, 0x83, 0xCC, 0xA2, 0x12, 0x23, 0xB7, 0x65 0xD0, 0x39, 0x7D, 0x3B, 0xD5, 0xB0, 0xAF, 0x1F 0x06, 0xC8, 0x34, 0xC5, 0x1B, 0x79, 0x4B, 0x66 0xBF, 0x88, 0x4A, 0xC4, 0xEF, 0x58, 0x3F, 0x0A 0x2C, 0x73, 0xD1, 0xF8, 0x6B, 0xE6, 0x20, 0xB8 0x22, 0x43, 0xB3, 0x33, 0xE7, 0xF0, 0x71, 0x7E 0x52, 0x89, 0x47, 0x63, 0x0E, 0x6D, 0xE3, 0xBE 0x59, 0x64, 0xEE, 0xF6, 0x38, 0x5C, 0xF4, 0x5B 0x49, 0xD4, 0xE0, 0xF3, 0xBB, 0x54, 0x26, 0x2B 0x00, 0x86, 0x90, 0xFF, 0xFE, 0xA6, 0x7B, 0x05 0xAD, 0x68, 0xA1, 0x10, 0xEB, 0xC7, 0xE2, 0xF2 0x46, 0x8A, 0x6C, 0x14, 0x6E, 0xCF, 0x35, 0x45 0x50, 0xD2, 0x92, 0x74, 0x93, 0xE1, 0xDA, 0xAE 0xA9, 0x53, 0xE4, 0x40, 0xCD, 0xBA, 0x97, 0xA3 0x91, 0x31, 0x25, 0x76, 0x36, 0x32, 0x28, 0x3A 0x24, 0x4C, 0xDB, 0xD9, 0x8D, 0xDC, 0x62, 0x2A 0xEA, 0x15, 0xDD, 0xC2, 0xA5, 0x0C, 0x04, 0x1D 0x8F, 0xCB, 0xB4, 0x4F, 0x16, 0xAB, 0xAA, 0xA0 24
25 3: Partial interpolations of the S box terms/deg/points equation points x (56, 92, 93, 106, 158, 172, 227, 241) x+81 x 2 (4, 38, 107, 136, 165, 176, 209, 241, 255) x+191 x 2 (11, 14, 42, 62, 70, 100, 233, 243, 245) x+239 x 2 (13, 40, 53, 55, 174, 232, 235, 249, 255) x+34 x 2 (15, 122, 143, 170, 175, 210, 211, 219, 226) x+205 x 2 (21, 44, 98, 117, 175, 196, 228, 238, 247) x+139 x 2 (23, 63, 73, 122, 124, 131, 139, 150, 214) x+33 x 2 (24, 75, 99, 107, 111, 134, 150, 201, 231) x+124 x 2 (26, 60, 68, 113, 123, 133, 154, 199, 206) x+61 x 2 (32, 46, 111, 153, 188, 200, 209, 217, 245) x+16 x 2 (36, 53, 69, 78, 103, 120, 170, 242, 250) x+109 x 2 (40, 63, 92, 94, 96, 150, 175, 186, 192) x+211 x 2 (41, 71, 78, 121, 141, 143, 158, 171, 248) x+148 x 2 (65, 73, 77, 79, 112, 143, 153, 194, 225) x+101 x x 3 (21, 33, 35, 61, 77, 82, 90, 104, 171, 173, 190, 213, 246) 25
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
4. 半角文字コード変換表 ここでは 半角文字のコード変換についての詳細な表を記載します の文字と文字コード (16 進数 ) には 表内で灰色の網掛けを設定しています 4.1 IBMカナ文字拡張からへの変換 16 進数 16 進数 16 進数 16 進数 16 進数 16 進数 SP 0x40 S
2013 年 4 月 3 日 お客様各位 株式会社セゾン情報システムズ HULFT 事業部 コード変換機能での のサポート 拝啓貴社ますますご清祥のこととお慶び申し上げます 平素は格別のご高配を賜り 厚く御礼申し上げます idivo Ver.1.4.0 では コード変換機能で変換できるコード体系の 1 つとして をサポートしました ついては 次に示すコード変換のパターンにおける 文字と文字コード (16
日立液晶プロジェクター CP-AW2519NJ 取扱説明書- 詳細版-
PAGE UP DOWN D- ESC ENTER 1 1 2 2 3 COMPUTER IN1 USB TYPE A DC5V 0.5A USB TYPE B HDMI COMPUTER IN2 LAN CONTROL MONITOR OUT MIC AUDIO IN1 AUDIO IN3 AUDIO OUT R R L L S-VIDEO AUDIO IN2 VIDEO PAGE UP DOWN
AD7142: 静電容量タッチ・センサ向けのプログラマブル・コントローラ
AD7142 CDC 36ms 1fF 14 RC RAM SPI AD7142 I 2 C AD7142-1 V DRIVE GPIO 325mm5mm LFCSP_VQ 2.63.6V 1mA 50µA A/V CIN0 30 CIN1 31 CIN2 32 CIN3 1 CIN4 2 CIN5 3 CIN6 4 CIN7 5 CIN8 6 CIN9 7 CIN10 8 CIN11 9 CIN12
HyRAL®FPGA設計仕様書
HyRAL Encryption FPGA HyRAL FPGA 2009/12/ 13 2 2010/01/11 3. FPGA 3.1. Const1, 2,3 3.3.ciphergen 3.3.6. 3.4. Decrypt 4 3 2010/01/26 1. i 1.... 1 2.... 1 2.1. FPGA... 1 2.2.... 1 2.3.... 1 2.4. IP... 1
共通鍵ブロック暗号CLEFIAの安全性評価報告書
CLEFIA 23 1 31 CLEFIA 2007 SONY [5]128 128/192/256 4 Type-2 Feistel 128 18 192,256 22,26 CLEFIA [1] [12] CLEFIA 2 S-box S 0,S 1 ) CLEFIA 2 truncate S 0,S 1 truncate Viterbi DSM(Difffusion Switching Mechanism)
‚å™J‚å−w“LŁñfi~P01†`08
156 2003 2 3 4 5 6 7 8 9 c f c a g 10 d c d 11 e a d 12 a g e 13 d fg f 14 g e 15 16 17 18 19 20 21 db de de fg fg g gf b eb g a a e e cf b db 22 d b e ag dc dc ed gf cb f f e b d ef 23 f fb ed e g gf
補足情報
1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5
Ethernet / / Ver
Ethernet / / Ver. 7.1 2007.09.10 1 I/O...1-1 1.1...1-1 1.2...1-1 1.3...1-1 1.4...1-2 1.5...1-3 2...2-1 2.1...2-1 2.1.1...2-1 2.1.2...2-1 2.1.3...2-3 2.1.4...2-3 2.1.5...2-4 2.1.6...2-5 2.2 Ethernet...2-6
05‚å™J“LŁñfi~P01-06_12/27
2005 164 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 g a 9 f a 10 g e g 11 f g g 12 a g g 1 13 d d f f d 14 a 15 16 17 18 r r 19 20 21 ce eb c b c bd c bd c e c gf cb ed ed fe ed g b cd c b 22 bc ff bf f c f cg
007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000
EDOGAWA ITY Y @ Y 60 7 66997 00 00 00 00 600 000 000 4900 900 700 000 f 004000 00 000 7f 70g 0 0 007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
, ,279 w
No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574
Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate: 販売終了
Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate:09 100 5919 DJ!0 DF DF @3 q w e 130 230 TR RA 0H R 130 230 RA TR R R RA 0.02MPa RA 130 230 130 230 R 0.06MPa RA 0.15MPa q R #1 TR #6 I N D E X
あさひ indd
2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000
, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =
x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x
( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................
1122 1015 1 Voices 11 11 1 1 1 1 1 1 7 3 4 3 4 3 4 1 1 1 1 1 e 1 f dd 1 d 1 1 1 1 de 1 f 1 d b b bb ef f bb 1 1 882-1111 882-1160 1 1 a 6 1 1 1 f 1 1 c 1 f 1 1 f 1 cf 1 bf 1 1 1 1 a 1 g 1 g 1 af g 1 11
学習の手順
NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P
‚å™J‚å−w“LŁñ›ÄP1-7_7/4
2006 167 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 d ca 10 c f e 11 e g e 12 d b 13 f bf 14 15 16 17 b c d cc bc e ef gf gf dc dc bc f f cd bf e df bd f bf c C d E c e 18 19 bc b b f 20 d d e d e bf ec d e ef
空き容量一覧表(154kV以上)
1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため
2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし
1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
ESMPRO/ServerManager 経由で受信するイベント一覧 本資料では ESMPRO/ServerManager 経由で受信するイベントを記載します イベント区分が " その他 " 以外のイベントはリファレンスガイドデータ編を参照してください 以下の障害イベントは ポリシー設定の ポリシー
ESMPRO/ServerManager 経由で受信するイベント一覧 本資料では ESMPRO/ServerManager 経由で受信するイベントを記載します イベント区分が " その他 " 以外のイベントはリファレンスガイドデータ編を参照してください 以下の障害イベントは ポリシー設定の ポリシー規則設定 ウィンドウで [ 通報元 ] に "SystemMonitorEvent" を指定することで確認でき
PROSTAGE[プロステージ]
PROSTAGE & L 2 3200 650 2078 Storage system Panel system 3 esk system 2 250 22 01 125 1 2013-2014 esk System 2 L4OA V 01 2 L V L V OA 4 3240 32 2 7 4 OA P202 MG55 MG57 MG56 MJ58 MG45 MG55 MB95 Z712 MG57
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
しんきんの現況H30.PS
テ ィスクローシ ャー 2018 氷見伏木しんきんの現況 > くらしのとなりに いつもしんきん氷見伏木信用金庫 http://www.shinkin.co.jp/himifusi/ ab cdef a a a å æ б d d de aef д aef aef ф aef ф aef aef a dfb d ff ab cdeb f å a a a c
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 2019.02 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの CPC Revisions(CPCの改訂 ) 内のPre-releaseをご覧ください http://www.cooperativepatentclassification.org/cpcrevisions/prereleases.html
untitled
Adobe-Japan1-6 Unicode : Unicode Adobe-Japan1-6 Adobe Systems : PDF CID OpenType/CFF Adobe-Japan1-6 vs. Unicode Character codes in Japan Koichi Yasuoka Author Abstract: In Japan we use so many kanji variants
Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F
Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
h1-4_cs5.5.indd
SIMATIC HMI SIMATIC HMI SIMATIC HMI Comfort Panel All-in-One SIMATIC Comfort Panel all-in-one 4 22 1677 0 100% IP65 CEULKCRCMATEX HMI VB HMI ATEX 4 12 SIMATIC HMI Basic Panel 2 nd Generation SIMATIC Basic
取扱説明書 [F-12D]
12.7 ISSUE DATE: NAME: PHONE NUMBER: MAIL ADDRESS: F-12D e e e 1 e 2 1 2 3 4 5 6 7 8 9 10 11 a b c d a b c d 12 a b cd e a b c d e 13 14 15 a b c d 16 17 a b d a b e f g h i l m e n o p c j k c q r s t
取扱説明書 [F-02F]
F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o
3.4 con: 3.5 ws: 3.6 newpage: (TeX ) 3.7 clearpage: (TeX ) 4. 4.1 4.2 4.3 :QMath 1 1.1 XeX XML1.0 XML DTD (Document Type Definition, ) DTD XeX jarticl
2000-11-29 2005-04-20 XeX IMS:20001129001; NDC:021.4; keywords:, ; 1. 1.1 1.2 1.3 1.4 1.5 1.6 2. HTML 2.1 p: 2.2 br: 2.3 cite: 2.4 blockquote: 2.5 em: 2.6 strong: 2.7 sup: 2.8 sub: 2.9 ul: 2.10 ol: 2.11
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
1007 ステルスデバッガを利用したマルウェア解析手法の提案
マルウェア対策研究人材育成ワークショップ 2008 ステルスデバッガを利用したマルウェア 解析手法の提案 NTT 情報流通プラットフォーム研究所 川古谷裕平岩村誠伊藤光恭 2008/10/10 1 目次 背景 ステルスデバッガの提案 CCC Dataset 2008 検体による評価 考察 まとめ 2008/10/10 2 背景 マルウェアの高度化 高機能化 柔軟な機能追加 自身の隠蔽化 耐解析機能
05‚å™J‚å−w“LŁñ‘HP01-07_10/27
2005 163 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 10 g a 11 c e a 12 c g a f d 13 e f g g 1 2 f 14 bf e bd 15 bd bd bdf f b 16 17 18 bb 19 fe 20 21 ag 22 bb dd 23 EA e f g a 24 25 25 ea e a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
取扱説明書<詳細版>
B5FK-3441-01 1 2 3 4 5 6 7 8 危 険 警 告 注 意 9 10 11 警 告 12 警 告 注 意 13 14 15 注 意 警 告 16 注 意 警 告 17 警 告 注 意 注 意 18 19 20 21 22 23 1 2 3 24 4 1 2 3 25 4 5 26 6 7 27 8 9 28 10 29 11 12 30 31 13 14 32 15 33 16
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1
ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
<4D F736F F D20838A B F955C8E8682A982E796DA8E9F914F5F A815B FD B A5F E646F63>
2008 年度版リストガイド ( メッセージ認証コード ) 平成 21 年 3 月 独立行政法人情報通信研究機構独立行政法人情報処理推進機構 1 1 1.1............................. 1 1.1.1............................ 1 1.1.2....................... 1 1.1.3...........................
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 2019.08 版が発効します 原文及び詳細はCPCホームページのCPC Revisions(CPCの改訂 ) をご覧ください https://www.cooperativepatentclassification.org/cpcrevisions/noticeofchanges.html
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
A G A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * * G A C b a HIKJ K J L f B c g 9 K c d g e 7 G 7 1 G 1 aa g g g c L M G L H G G 4 aa c c A a c CB B C A G f A G f G 9 8 1 2
BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B
2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
G A A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * G A C b a HIKJ K J L f B c K c d e G 7 1 G 1 aa L M G L H G G 4 aa c c A a CB B A G f c C A G f G 9 8 1 2 c c G A A A f 1 13
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
untitled
5 28 EAR CCLECCN ECCN 1. 2. 3. 4. 5.EAR page 1 of 28 WWW.Agilent.co.jp -> Q&A ECCN 10020A 10070A 10070B 10070C 10071A 10071B 10072A 10073A 10073B 10073C 10074A 10074B 10074C 10076A 10229A 10240B 10430A
SIRIUS_CS3*.indd
SIRIUS Innovations SIRIUS SIRIUS Answers for industry. SIRIUS SIRIUS S00 S0 SIRIUS SIRIUS ZX0-ORAZ-0AB0 7.5kW 6 S00 7 8 7.5kW 9 S00 0 8.5kW S0 8.5kW S0 5 6 7 IO-Link AS-InterfaceRT 8 8US 5 6 SIRIUS SIRIUS
hyousi
GS- ~ GS-0 () ACE ACE ACE ACE ACE! : ACE : : - C 0 C : 9 9 4 R4.3 GS- () N 0 N 4 Ø 3 L+/- 2 4 A3, A3, B3, M3.x0. B3, C3, GS-- 2 GS-- 92 GS-- 1 C3,. GS--0 0 132 GS--0 0 12 N GS--0 0 192 M4x0. D3, 3 GS---AC-N
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
Netfilter Linux Kernel IPv4 IPv6 Ethernet iptables IPv4 ip6tables IPv6 ebtables Ethernet API Kernel
Netfilter(iptables) Winny/Share @ Netfilter Linux Kernel IPv4 IPv6 Ethernet iptables IPv4 ip6tables IPv6 ebtables Ethernet API Kernel IPP2P P2P Netfilter edonkey emule Kademlia KaZaA FastTrack Gnutella
17 18 2
17 18 2 18 2 8 17 4 1 8 1 2 16 16 4 1 17 3 31 16 2 1 2 3 17 6 16 18 1 11 4 1 5 21 26 2 6 37 43 11 58 69 5 252 28 3 1 1 3 1 3 2 3 3 4 4 4 5 5 6 5 2 6 1 6 2 16 28 3 29 3 30 30 1 30 2 32 3 36 4 38 5 43 6
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a
[] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a
