Microsoft PowerPoint - DA2_2017.pptx
|
|
|
- おきまさ たかぎ
- 8 years ago
- Views:
Transcription
1 // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される アルゴリズムの動き - - 閉路のない有向グラフをトポロジカル ソートする アルゴリズムの動き 左の頂点から順番に選択, 選択された頂点の出辺を緩和する - -
2 // アルゴリズムの動き - - アルゴリズムの動き 擬似コード AG-SHORTEST-PATHS(G, w, ) G の頂点をトポロジカル ソートする INITIALIZE-SINGLE-SOURCE(G, ) for 各頂点 u ( トポロジカル ソート順に ) do for 各頂点 v Adj[u] do RELAX(u, v, w) アルゴリズムの正当性 なぜこれで最短路木が得られるのか? 証明すべきこと " アルゴリズム終了時点で, すべての頂点 v に対して d[v] = δ(, v) になっている " これが分かれば先行点部分グラフの性質から最短路木が得られることが証明できる 経路緩和性で証明 ( 補題.) 頂点をトポロジカルソート順に処理して緩和するから, 経路緩和性が成立する 詳細は教科書参照のこと 計算量 Θ(V + E) トポロジカル ソート Θ (V + E) 初期化 O(V) for ループの繰り返し回数 E, ループ一回あたり Θ() Θ(E) ダイクストラのアルゴリズム
3 // ダイクストラのアルゴリズム 全ての辺の重みが非負であるグラフの単一始点最短路問題を高速に解く w(u, v) ベルマン フォードのアルゴリズムより高速に解ける ダイクストラ法の方針 最小の最短路推定値を持つ頂点 u を選択し, u の出辺を緩和 を繰り返す 貪欲戦略 一度選択した頂点は二度と選択されない 始点 からの最終的な最短路重みが既に決まっている頂点の集合 S を管理 u V - S u を選択 u を S に追加 u の出辺を緩和 u の選択に min 優先度付きキュー Q を用いる ダイクストラのアルゴリズムの動き Q = V - S にある選択された u ( 最 の最短路推定値 ) S にある ダイクストラのアルゴリズムの動き 同様に u からの出辺が緩和される そして Q から次の u を選ぶ 最初に選択された始点 からの出辺が緩和される始点 は S に加えられる. 次に選択されるのは,S にまだ ってないもので最 の最短路推定値 () を持つ頂点 同様に繰り返す ダイクストラのアルゴリズムの動き 緩和 最短路重み d, 最短路 π がそれぞれ得られる IJKSTRA(G, w, ) 擬似コード INITIALIZE-SINGLE-SOURCE(G, ) S φ Q V[G] while Q φ do u EXTRACT-MIN(Q) S S {u} for 各頂点 v Adj[u] do RELAX(u, v, w)
4 // このネットワークの赤の頂点からの最短距離をダイクストラのアルゴリズムで求めよ
5 // アルゴリズムの正当性 なぜこれで最短路木が得られるのか? 証明すべきこと " 停止した後, すべての頂点 v に対して d[v] = δ(, v) になっている " これが分かれば先行点部分グラフの性質から最短路木が得られることが証明できる while ループの各繰り返しの開始直前に既に d[v] = δ(, v) が各頂点 v S について成立している ( 定理.) ことから証明できる 貪欲戦略に基づく選択が正しい 計算量 min 優先度付きキューの実現方法に依存 EXTRACT-MIN が V 回 ECREASE-KEY が E 回 二分木ヒープ EXTRACT-MIN, ECREASE-KEY 共に O(lg V) ダイクストラ法 O((V+E) lg V) フィボナッチヒープ EXTRACT-MIN O(lg V) ならし ECREASE-KEY O() ならし ダイクストラ法 O(VlogV + E) まとめ 単一始点最短路問題を解くアルゴリズムについて学んだ ベルマン フォードのアルゴリズム 閉路なし有向グラフ ( トポロジカル ソート ) ダイクストラのアルゴリズム 各頂点の選択順序, 緩和操作の回数がそれぞれ異なる. またそれにより汎用性 / 効率性が変わる 差分制約と最短路 差分制約式系 制約が二つの変数の差に関して与えられる Ax b という行列の表現で書くと,A の各行はちょうど一つの と一つの - を含み, 残りは x - x x x x x - x x - x x - 差分制約式系の適用分野. 各変数は, ある事象が生起する時刻を示す 事象が生起する時刻の間隔に対して, ある値以下という制約が与えられる. 各変数は, 電子回路上の端子の電位を表す 端子間の電位差に関して, ある値以下という制約が与えられる
6 // 差分制約式系と最短経路 () 差分制約式系と最短経路 () 差分制約式系中の各変数 x,, x n に対応する頂点 v,, v n を考える さらに, 始点となる特別な頂点 v を導入する 始点と各頂点を結ぶ有向辺を導入, 重みは 制約 x j ー x i b に対して, 辺 (v i, v j ) を導入, 重みはb x - x x x x x - x x - x x - この制約グラフの単一始点最短路を求めたとき, その最短路重みの値のベクトルが差分制約式系の解 ( のひとつ ) になる ベルマン フォードのアルゴリズムが使える O(VE) すなわち多項式時間で解ける : 右のグラフの最短経路重みをベルマン フォードのアルゴリズムを用いて求めよ x - x x x x x - x x - x x - 差分制約式系と最短経路 () 解答 : (, -, -, -). ベクトルの各要素に同じ値を加えても制約を満たす. 例えば (,,, ) 負の重みの閉路があると解が存在しない x - x x x x x - x x - x x -. 全点対最短路 章の内容 動的計画法 + 反復自乗法 Floyd-Warhall のアルゴリズム Johonon のアルゴリズム 最短経路の性質 (v i,, v k, v j ) が v i から v j への最短経路であるとする. すなわち, 最短路は v j に到達する直前に v k を経由する. この場合, 以下が成立する. ただし δ(v i, v j ) は v i, v j 間の最短経路の長さ : δ(v i, v j )=δ(v i, v k )+w(v k, v j )
7 // 最短経路長を求める方法 動的計画法を使う : d (m) (i, を, 長さ ( パス中の頂点の数 ) が高々 m の i j 間の最短経路とする. 以下のように帰納的に定義可能. d d () ( m) min, i j, i j k n { d ( m), d ( m) k) w( k, } 最短経路長の求め方 n= V とすると, 最短経路は閉路を含まないので,d (n-) (i, が i j 間の最短経路長となる. O( V log V ) で実行できる. Floyd-Warhall アルゴリズムによって,O( V ) に改善可能. 全点対最短路アルゴリズム 入力 : 負の重みがない有向グラフ G=(V, E), V =n. n n の隣接行列 W=(W[i, j]) W[ i, j] w( i,, i j,( u, v) E,( u, v) E 全点対最短路アルゴリズム 出力 : n n の距離行列 =([i, j]) [i, j]=δ(i, n n の先行点行列 π=(π[i, j]) もしi jの経路がなければπ[i, j]=, そうでなければ,k=π[i, j] の時,i jの最短経路はkから直接 jに至る. π[i, j] i k j Extend-Shortet-Path(,W) { Let = ( [i,j]) be an nn matrix for i= to n do for j= to n do [i,j] for k= to n do [i,j]min( [i,j],[i,k]+w[k,j]) return } Time Complexity: O(n ) Slow-All-Pair-Shortet-Path(G,W) { () W for m= to n- do (m) Extend-Shortet-Path( (m-),w) return (n-) } Time Complexity: O(n )
8 // 動的計画法で以下のグラフの全点対最短路を求めよ
9 // 反復二乗法 行列の積を求めるなら, 行列 の 乗 ( ) を求めるのに, を 回かけても, の 乗を求めて, これを自乗しても結果は同じ. 同様に,Extend-Shortetot-Path の引数を, と ではなく, 両方を とすると, 正しく が得られる ( 経由する頂点数が 以下の経路を二つ組み合わせれば, 頂点数が 以下の経路が得られる ) 最終的に, になれば OK. Fater-All-Pair-Shortet-Path(G,W) { () =W m= while n->m do (m) Extend-Shortet-Path( (m), (m) ) m = m return (m) } Time Complexity: O(n logn) Floyd-Warhall アルゴリズム O(n ) のアルゴリズム, 負辺は存在しても良いが, 負閉路はないと仮定. 最短路の中間頂点を考える.ij 間の経路が (i, u,, u m, とすると,u,, u m が中間頂点. Floyd-Warhall アルゴリズム 頂点集合 V={,, n} に関して,d (k) (i, を, 中間頂点として {,, k} のみが利用可能な 場合のij 間の最短経路長とする. (), i j d w( i,, i j d ( k ) min{ d ( k ), d ( k ) k) d ( k ) ( k, } i k j 中間頂点中間頂点 {,, k-} {,,k-} Floyd-Warhall アルゴリズム Floyd-Warhall(G,W) { () W for k = to n do for i = to n do for j = to n do if (k-) [i,j]> (k-) [i,k]+ (k-) [k,j] then (k) [i,j] (k-) [i,k]+ (k-) [k,j] π[i,j] π[k,j] ele (k) [i,j] (k-) [i,j] return (n) } Time Complexity: O(n )
10 // Floyd-Warhall の実行例 - - Floyd-Warhall の実行例 () () - - Floyd-Warhall の実行例 () () () () Floyd-Warhall の実行例 () () () () - - Floyd-Warhall の実行例 () () () () - - Floyd-Warhall の実行例 () () () () - -
11 // Floyd-Warhall の実行例 () () () () - - Floyd-Warhall の実行例 () - - :Floyd-Warhall 以下のグラフに関して,Floyd-Warhall のアルゴリズムで全点対最短経路を求めよ :Floyd-Warhall
Microsoft PowerPoint - DA2_2017.pptx
1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ
Microsoft PowerPoint - DA2_2018.pptx
1//1 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I). 単一始点最短路問題 第 章の構成 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ 特定の開始頂点 から任意の頂点
Microsoft PowerPoint - ad11-09.pptx
無向グラフと有向グラフ 無向グラフ G=(V, E) 頂点集合 V 頂点の対を表す枝の集合 E e=(u,v) 頂点 u, v は枝 e の端点 f c 0 a 1 e b d 有向グラフ G=(V, E) 頂点集合 V 頂点の順序対を表す枝の集合 E e=(u,v) 頂点 uは枝 eの始点頂点 vは枝 eの終点 f c 0 a 1 e b d グラフのデータ構造 グラフ G=(V, E) を表現するデータ構造
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
離散数学
離散数学 最短経路問題 落合秀也 その前に 前回の話 深さ優先探索アルゴリズム 開始点 から深さ優先探索を行うアルゴリズム S.pu() Wl S not mpty v := S.pop() I F[v] = l Tn, F[v] := tru For no u n A[v] S.pu(u) EnFor EnI EnWl (*) 厳密には初期化処理が必要だが省略している k 時間計算量 :O(n+m)
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
Microsoft PowerPoint - DA2_2018.pptx
データ構造とアルゴリズム IⅠ 第 7 回幅優先 / 深さ優先探索 / トポロジカルソート. 基本的グラフアルゴリズム 無向グラフ 個の頂点と7 本の辺からなる無向グラフ 隣接リスト 各頂点に関して, 隣接する ( 直接, 辺で結ばれた ) 頂点集合をリストで表現 無向グラフ G=(V,E),V は頂点集合,E は辺集合.E の要素は頂点のペア {u,} によって表される.{u, } と {, u}
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
Microsoft PowerPoint - 06graph3.ppt [互換モード]
I118 グラフとオートマトン理論 Graphs and Automata 担当 : 上原隆平 (Ryuhei UEHARA) [email protected] http://www.jaist.ac.jp/~uehara/ 1/20 6.14 グラフにおける探索木 (Search Tree in a Graph) グラフG=(V,E) における探索アルゴリズム : 1. Q:={v { 0 }
離散数学
離散数学 最小全域木と最大流問題 落合秀也 今日の内容 最小全域木 プリムのアルゴリズム 最大流問題 フォード ファルカーソンのアルゴリズム 今日の内容 最小全域木 プリムのアルゴリズム 最大流問題 フォード ファルカーソンのアルゴリズム 最小全域木を考える Minimum Spanning Tree Problem ラベル付 ( 重み付 ) グラフ G(V, E) が与えられたとき ラベルの和が最小となる全域木を作りたい
簡単な検索と整列(ソート)
フローチャート (2) アルゴリズム論第 2 回講義 2011 年 10 月 7 日 ( 金 ) 反復構造 ( 一定回数のループ処理 ) START 100 回同じ処理を繰り返す お風呂で子供が指をおって数を数える感じ 繰り返し数を記憶する変数をカウンター ( 変数名 I をよく使う ) と呼ぶ カウンターを初期化して, 100 回繰り返したかどうか判定してそうならば終了そうでなければ処理を実行して
プログラム言語及び演習Ⅲ
平成 28 年度後期データ構造とアルゴリズム期末テスト 各問題中のアルゴリズムを表すプログラムは, 変数の宣言が省略されているなど, 完全なものではありませんが, 適宜, 常識的な解釈をしてください. 疑問があれば, 挙手をして質問してください. 時間計算量をオーダ記法で表せという問題では, 入力サイズ n を無限大に近づけた場合の漸近的な時間計算量を表せということだと考えてください. 問題 1 入力サイズが
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft PowerPoint - H20第10回最短経路問題-掲示用.ppt
プログラミング言語 I 第 10 回 最短経路問題 埼玉大学工学部電気電子システム工学科伊藤和人 最短経路問題とは 始点から終点へ行く経路が複数通りある場合に 最も短い経路を見つける問題 経路の短さの決め方によって様々な応用 最短経路問題の応用例 カーナビゲーション 現在地から目的地まで最短時間のルート 経路 = 道路 交差点において走る道路を変更してもよい 経路の短さ = 所要時間の短さ 鉄道乗り換え案内
PowerPoint プレゼンテーション
解けない問題 を知ろう 保坂和宏 ( 東京大学 B2) 第 11 回 JOI 春合宿 2012/03/19 概要 計算量に関して P と NP NP 完全 決定不能 いろいろな問題 コンテストにおいて Turing 機械 コンピュータの計算のモデル 計算 を数学的に厳密に扱うためのもの メモリのテープ (0/1 の列 ), ポインタ, 機械の内部状態を持ち, 規則に従って状態遷移をする 本講義では
行列、ベクトル
行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算
Microsoft PowerPoint - 09re.ppt [互換モード]
3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,
Microsoft PowerPoint - 13.ppt [互換モード]
13. 近似アルゴリズム 1 13.1 近似アルゴリズムの種類 NP 困難な問題に対しては多項式時間で最適解を求めることは困難であるので 最適解に近い近似解を求めるアルゴリズムが用いられることがある このように 必ずしも厳密解を求めないアルゴリズムは 大きく分けて 2 つの範疇に分けられる 2 ヒューリスティックと近似アルゴリズム ヒュ- リスティクス ( 発見的解法 経験的解法 ) 遺伝的アルゴリズム
Taro-再帰関数Ⅲ(公開版).jtd
0. 目次 1 1. ソート 1 1. 1 挿入ソート 1 1. 2 クイックソート 1 1. 3 マージソート - 1 - 1 1. ソート 1 1. 1 挿入ソート 挿入ソートを再帰関数 isort を用いて書く 整列しているデータ (a[1] から a[n-1] まで ) に a[n] を挿入する操作を繰り返す 再帰的定義 isort(a[1],,a[n]) = insert(isort(a[1],,a[n-1]),a[n])
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
Microsoft PowerPoint - H20第10回最短経路問題-掲示用.ppt
最短経路問題とは プログラミング言語 I 第 0 回 から終点へ行く経路が複数通りある場合に 最も短い経路を見つける問題 経路の短さの決め方によって様々な応用 最短経路問題 埼玉大学工学部電気電子システム工学科伊藤和人 最短経路問題の応用例 カーナビゲーション 現在地から目的地まで最短時間のルート 経路 = 道路 交差点において走る道路を変更してもよい 経路の短さ = 所要時間の短さ 鉄道乗り換え案内
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,
オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理
Microsoft PowerPoint - algo ppt [互換モード]
( 復習 ) アルゴリズムとは アルゴリズム概論 - 探索 () - アルゴリズム 問題を解くための曖昧さのない手順 与えられた問題を解くための機械的操作からなる有限の手続き 機械的操作 : 単純な演算, 代入, 比較など 安本慶一 yasumoto[at]is.naist.jp プログラムとの違い プログラムはアルゴリズムをプログラミング言語で表現したもの アルゴリズムは自然言語でも, プログラミング言語でも表現できる
<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69
第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム
cp-7. 配列
cp-7. 配列 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 月の日数配列とは. 配列の宣言. 配列の添え字. 例題 2. ベクトルの内積例題 3. 合計点と平均点例題 4. 棒グラフを描く配列と繰り返し計算の関係例題 5. 行列の和 2 次元配列 2 今日の到達目標
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
オートマトンと言語
オートマトンと言語 4 回目 5 月 2 日 ( 水 ) 3 章 ( グラフ ) の続き 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/ 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 2 4 月 8 日 2 章 ( 数式の記法, スタック,BNF) 3 4 月 25 日 2
コンピュータ工学講義プリント (7 月 17 日 ) 今回の講義では フローチャートについて学ぶ フローチャートとはフローチャートは コンピュータプログラムの処理の流れを視覚的に表し 処理の全体像を把握しやすくするために書く図である 日本語では流れ図という 図 1 は ユーザーに 0 以上の整数 n
コンピュータ工学講義プリント (7 月 17 日 ) 今回の講義では フローチャートについて学ぶ フローチャートとはフローチャートは コンピュータプログラムの処理の流れを視覚的に表し 処理の全体像を把握しやすくするために書く図である 日本語では流れ図という 図 1 は ユーザーに 0 以上の整数 n を入力してもらい その後 1 から n までの全ての整数の合計 sum を計算し 最後にその sum
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
スライド 1
第 13 章系列データ 2015/9/20 夏合宿 PRML 輪読ゼミ B4 三木真理子 目次 2 1. 系列データと状態空間モデル 2. 隠れマルコフモデル 2.1 定式化とその性質 2.2 最尤推定法 2.3 潜在変数の系列を知るには 3. 線形動的システム この章の目標 : 系列データを扱う際に有効な状態空間モデルのうち 代表的な 2 例である隠れマルコフモデルと線形動的システムの性質を知り
Microsoft Word - VBA基礎(3).docx
上に中和滴定のフローチャートを示しました この中で溶液の色を判断する部分があります このような判断はプログラムではどのように行うのでしょうか 判断に使う命令は IF 文を使います IF は英語で もし何々なら という意味になります 条件判断条件判断には次の命令を使います If 条件式 1 Then ElseIf 条件式 2 Then ElseIf 条件式 3 Then 実行文群 1 実行文群 2 実行文群
4-4 while 文 for 文と同様 ある処理を繰り返し実行するためのものだが for 文と違うのは while 文で指定するのは 継続条件のみであるということ for 文で書かれた左のプログラムを while 文で書き換えると右のようになる /* 読込んだ正の整数値までカウントアップ (for
4-4 while 文 for 文と同様 ある処理を繰り返し実行するためのものだが for 文と違うのは while 文で指定するのは 継続条件のみであるということ for 文で書かれた左のプログラムを while 文で書き換えると右のようになる /* 読込んだ正の整数値までカウントアップ (for 文 ) */ int i, no; for (i = 0; i
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
生命情報学
生命情報学 34 進化系統樹推定 阿久津達也 京都大学化学研究所 バイオインフォマティクスセンター 進化系統樹 進化系統樹 種間 もしくは遺伝子間 の進化の関係を表す木 以前は形態的特徴をもとに構成 現在は配列情報をもとに構成 有根系統樹と無根系統樹 有根系統樹 : 根 共通の祖先に対応 がある系統樹 無根系統樹 : 根のない系統樹 いずれも葉にのみラベル 種に対応 がつく 有根系統樹 無根系統樹
データ構造
アルゴリズム及び実習 7 馬青 1 表探索 定義表探索とは 表の形で格納されているデータの中から条件に合ったデータを取り出してくる操作である 但し 表は配列 ( 連結 ) リストなどで実現できるので 以降 表 の代わりに直接 配列 や リスト などの表現を用いる場合が多い 表探索をただ 探索 と呼ぶ場合が多い 用語レコード : 表の中にある個々のデータをレコード (record) と呼ぶ フィールド
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
memo
数理情報工学演習第一 C プログラミング演習 ( 第 5 回 ) 2015/05/11 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 今日の内容 : プロトタイプ宣言 ヘッダーファイル, プログラムの分割 課題 : 疎行列 2 プロトタイプ宣言 3 C 言語では, 関数や変数は使用する前 ( ソースの上のほう ) に定義されている必要がある. double sub(int
次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1
4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる
vecrot
1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向
alg2015-6r3.ppt
1 アルゴリズムとデータ 構造 第 6 回探索のためのデータ構造 (1) 補稿 : 木の巡回 ( なぞり ) 2 木の巡回 ( 第 5 回探索 (1) のスライド ) 木の巡回 * (traverse) とは 木のすべての節点を組織だった方法で訪問すること 深さ優先探索 (depth-first search) による木の巡回 *) 木の なぞり ともいう 2 3 1 3 4 1 4 5 7 10
経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)
経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
フローチャートの書き方
アルゴリズム ( 算法 ) 入門 1 プログラムの作成 機械工学専攻泉聡志 http://masudahp.web.fc2.com/flowchart/index.html 参照 1 何をどのように処理させたいのか どのようなデータを入力し どのような結果を出力させるのか問題を明確にする 2 問題の内容どおりに処理させるための手順を考える ( フローチャートの作成 )~アルゴリズム( 算法 ) の作成
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Microsoft PowerPoint - H22制御工学I-10回.ppt
制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
模擬試験問題(第1章~第3章)
基本情報技術者試験の練習問題 - 第 10 回 この問題は平成 19 年度春期の問題から抜粋しています 問 1 次のプログラムの説明及びプログラムを読んで, 設問 1~3 に答えよ プログラムの説明 整数型の 1 次元配列の要素 A[0],,A[N](N>0) を, 挿入ソートで昇順に整列する副プログラム InsertSort である (1) 挿入ソートの手順は, 次のとおりである (i) まず,A[0]
スライド タイトルなし
アルゴリズム入門 (8) ( 近似アルゴリズム ) 宮崎修一京都大学学術情報メディアセンター 近似アルゴリズムとは? 効率よく解ける問題 ( 多項式時間アルゴリズムが存在する問題 ) ソーティング 最短経路問題 最小全域木問題 効率よく解けそうにない問題 (NP 困難問題 ) 最小頂点被覆問題 MX ST MX CUT 本質的に問題が難しいのだが 何とか対応したい 幾つかのアプローチ ( 平均時間計算量
メソッドのまとめ
メソッド (4) 擬似コードテスト技法 http://java.cis.k.hosei.ac.jp/ 授業の前に自己点検以下のことがらを友達に説明できますか? メソッドの宣言とは 起動とは何ですか メソッドの宣言はどのように書きますか メソッドの宣言はどこに置きますか メソッドの起動はどのようにしますか メソッドの仮引数 実引数 戻り値とは何ですか メソッドの起動にあたって実引数はどのようにして仮引数に渡されますか
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
離散数学
離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則
