オートマトンと言語
|
|
|
- まな まきい
- 9 years ago
- Views:
Transcription
1 オートマトンと言語 4 回目 5 月 2 日 ( 水 ) 3 章 ( グラフ ) の続き 授業資料
2 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 2 4 月 8 日 2 章 ( 数式の記法, スタック,BNF) 3 4 月 25 日 2 章 (BNF),3 章 ( グラフ ) 4 5 月 2 日 3 章 ( グラフ ) 5 5 月 9 日 4 章有限オートマトン 6 5 月 6 日有限オートマトン 章の小テスト 7 5 月 23 日正規表現 8 5 月 3 日正規表現, 非決定性有限オートマトン 9 6 月 6 日中間試験, 前半のまとめ出張などにより, 授業日が変更になる場合があります.
3 授業の予定 回数月日 内容 6 月 3 日 NFA DFA 6 月 2 日 DFA の最小化 2 6 月 27 日 DFAの最小化, 有限オートマトン の応用 3 7 月 4 日 プッシュダウンオートマトン, チューリング機械 4 7 月 日 形式言語理論, 文脈自由文法 5 7 月 8 日 期末試験, まとめ 出張などにより, 授業日が変更になる場合があります.
4 前回のまとめ 2 章 3 章 BN(F) 記法 ( 離散 ) グラフ 多重グラフ 単純グラフ 連結グラフ ( コンピュータで扱う場合の ) グラフの表現
5 前回の宿題 演習問題 4(BNF 構文図式 ) グラフの説明内の用語を覚える 集合表現 隣接行列 隣接リスト 表現を変換し表示するプログラムを作る
6 前回の復習 3 章離散グラフと木グラフ ( 離散 ) グラフ (49 ページ ) 節点 ( ノード ) の集合と節点を結ぶ辺 ( エッジ, アーク ) の集合 節点 ( ノード ) 辺 ( エッジ ) 弧 ( アーク )
7 離散グラフの例ラベル付き無 向グラフ (49 ページ ) a b 節点 ( ノード ) 頂点, 点 辺 ( エッジ ) 弧 ( アーク ) c 7 d
8 離散グラフの例有向グラフ (49 ページ ) 辺 ( アーク ) に向きが有る
9 多重グラフ (5 ページ ) 同じ節点をつなぐ辺が複数ある 同じ節点対を結ぶ辺が 2 つある ( 多重辺 ) 節点 辺 始点と終点が同一節点の辺がある ( ループ ) 辺 節点 多重グラフ
10 多重グラフの部分グラフ (5 ページ ) 多重グラフ 多重グラフの部分グラフ あるグラフの部分集合がグラフをなしている ( 部分集合のすべての辺の両端がその部分集合の節点 )
11 単純グラフ ループも多重辺も含まないグラフ 多重グラフ以外のグラフ 節点 辺
12 節点ラベル付き単純グラフと節 点次数 (5 ページ ) 節点の次数 : 節点に接続する辺の数 ( 隣接節点の数 ) a b c 節点 aの次数 :2 節点 bの次数 : 節点 cの次数 : 節点 dの次数 :2 節点 eの次数 :3 d e
13 単純グラフの 次数, 径路, 小径, 順路, 閉路 次数 : 節点に接続する辺の数 ( 隣接節点の数 ) 偶節点 : 次数が偶数の節点 奇節点 : 次数が奇数の節点 孤立点 : 次数 の節点 径路 : ある二つの節点を結ぶ節点と辺の列 径路の長さ : 径路をなす辺の数 小径 : 辺が重複しない径路 順路 : 節点が重複しない径路 閉路 : 両端が同じ節点で, それ以外は節点の重複がない径路
14 径路, 小径, 順路, 閉路の例 (5 ページ ) b a c 径路の例 :a-d-c-a-d-b 長さ =5 小径の例 :a-b-e-c-a-d 長さ =5 順路の例 :a-d-c-e-b 長さ =4 閉路の例 :a-b-e-c-a 長さ =4 径路 小径 順路, 閉路 d e
15 前回はここまで 連結グラフ (5 ページ ) 連結グラフ : 任意の二つの節点間に径路が存在するグラフ 2 節点間の距離 : 二つの節点間の最短の順路の長さ グラフの直径 : 連結グラフの任意の 2 点間の距離の最大値 切断点 ( カットポイント ): ある節点とそれに連結する辺を除くと非連結になる節点 橋 ( ブリッジ ): その辺を除くと非連結になる辺
16 演習問題 下に示す連結グラフについて どこが切断点, 橋になるか示しなさい グラフの直径の長さを答えなさい a b d f c e g
17 演習問題 の解答 下に示す連結グラフについて どこが切断点, 橋になるか示しなさい そのグラフの直径の長さを答えなさい a b d f 切断点 : 橋 : 直径の長さ :3 c e g
18 グラフの表現の例 52 ページ (a) グラフ図表現 a b c d 計算機にグラフの情報を格納する方法 :(b),(c),(d)
19 グラフの表現の例 52 ページ (b) 集合表現 V = { a, b, c, d} 節点の集合 E = {( a, b),( a, c),( b, c),( b, d )} 辺の集合 a b c d
20 グラフの表現の例 52 ページ (c) 隣接行列表現 a b c d a b c d a b c d a と b が隣接 a 行 b 列 :,b 行 a 列 :
21 グラフの表現の例 52 ページ (d) 隣接リスト表現 (( a,( b, c)), a は b と c に隣接している ( b,( a, c, d )), ( c,( a, b)), a b ( d,( b))) c d
22 完全グラフ, 正則グラフ, 2 部グラフ, 木グラフ (53 ページ ) 完全グラフ : すべての節点が他のすべての節点と, 辺で結ばれているグラフ 正則グラフ : すべての節点の次数が等しいグラフ a b a c b d 2 部グラフ : 節点集合を 2 つに分けて, それぞれの集合内の節点同士を結ぶ辺がないグラフ c d a b 木グラフ : 閉路のない連結グラフ a b c d c d
23 演習問題 2 例題 3.2 図 3.6 のグラフについて答えよ (AからFへの小径( 小道 ) はいくつあるか ) (AからFへの順路( 道 ) はいくつあるか ) AとFの間の距離を求めよ このグラフの直径を求めよ (Bを含む異なる閉路はいくつあるか) A B C D E F
24 演習問題 2の解答例題 3.2 (52ページ) A から F への小径はいくつあるか 2 A から F への順路はいくつあるか A と F の間の距離を求めよ 2 このグラフの直径を求めよ 3 B を含む異なる閉路はいくつあるか 6
25 演習問題 3 例題 3.3 図 3.7のグラフについて答えよ グラフの隣接行列を求めよ (FからIへの順路はいくつあるか) グラフの直径を求めよ 切断点はどれか, すべて示せ ブリッジはどれか, すべて示せ A B C D E F G H I
26 演習問題 3 の解答 例題 3.3 (52 ページ ) グラフの隣接行列を求めよ 次ページ F から I への順路はいくつあるか 2 F と I の間の距離を求めよ 4 グラフの直径を求めよ 5 切断点はどれか すべて示せ B,D,H ブリッジはどれか すべて示せ A-B, D-H
27 例題 3.3 a グラフの隣接行列 A B C D E F G H I A B C D E F G H I
28 グラフ理論 (56 ページ ) グラフの性質について研究する学問 アルゴリズム, コンピュータのデータ構造などに応用されている 2 分探索木 平衡木,AVL 木 B 木
29 同型なグラフの例 二つのグラフの 節点集合間の写像が全単射 節点の隣接関係を保存 二つのグラフは互いに同型 B C A D E A B C D E A B C D E q s p t r p s r q t p s r q t ( A -> p, B -> s, C -> r, D -> q, E -> t )
30 グラフとその補グラフの例 完全グラフ グラフ G G の補グラフ G
31 ここまで a b 完全 自己補グラフの例 グラフ c d G G a b a b 同じ d c c d c d a b 同型
32 グラフの行列表現 単純グラフの隣接行列 = = 節点を結ぶ辺が存在しないとき節点と節点を結ぶ辺が存在するとき節点と行列 j i j i a n n a A ij ij ) ( 対称正方行列 節点節点
33 グラフの行列表現 単純グラフの接続行列 = = 辺と接続していないとき節点が辺と接続しているとき節点が行列 j i j i m m n m M ij ij ) ( 節点辺
34 オイラーグラフとハミルトングラフ オイラー閉路 : グラフの全ての辺をちょうど 度ずつ通る閉路 ( 一筆書きが可能 ) オイラーグラフ : オイラー閉路が存在するグラフ ハミルトン閉路 : グラフの全ての節点をちょうど 度ずつ通る閉路 ( 巡回セールスマン問題 ) ハミルトングラフ : ハミルトン閉路が存在するグラフ
35 オイラーグラフ, ハミルトングラフ オイラーグラフ ハミルトングラフ 全ての辺を 度ずつ通る閉路が存在するグラフ 一筆書きが出来る 全ての節点を 度ずつ通る閉路が存在するグラフ 巡回セールスマン問題
36 3.3 木グラフ 木 : 連結可能な有向グラフで, つの入力節点 ( 入次数 =)( 根 ) といくつかの出力節点 ( 出次数 =)( 葉 ) があり, かつ入口からすべての出口へ至る有向順路がそれぞれつだけ存在する.
37 木の特徴 2 進木 (2 分木 ) 入次数 : ルート, 根 (root) 分岐数 2 節点の次数 2 分岐節点 枝 (branch) 葉 (leaf) 出次数 : 部分木 深さ ( 高さ )2
38 木グラフの例 コンピュータのファイルシステム / bin boot var etc 親節点 home spool log ysuzuki nana 子節点兄弟 ( 姉妹 ) 節点
39 演習問題 例題 3.48( 改 ) 節点が 4 個以下で構成される木をすべて描け
40 演習問題 例題 3.48( 改 ) の答え 節点が 4 個以下で構成される木をすべて描け 8 種類
41 グラフの探索と探索木 B 有向グラフ A D AからFへの探索探索木初期節点 A C B C D E E E E と F には 2 種類のルートがある F ゴール F F
42 順序木 順序木の定義 任意の x,y S (S は木の節点集合 ) に対し, x,y が祖先 子孫関係の順序集合 (S; t ) で比較可能なとき,x が y の祖先ならば x o y x,y が (S; t ) で比較不能のとき,x,y の共通の祖先 (S における {x,y} の上限節点 ) での枝の集合で,x の属する枝の根が y の属する枝の根より上位であれば ( 左にあれば ),x o y 親の親 親 y X 共通の祖先 親 X y x t y x o y x o y
43 演習問題 2 例題 3.59 図 3.24 の順序木の節点を, 全順序関係 o により, 降順に並べよ. a b c d e f g h i j k
44 演習問題 2 例題 3.59 の答え a b c d e f g h i j a-b-e-f-g-c-h-d-i-k-j k 前置記法の順序
45 数式の構文と構文解析 (p.78) + 中置記法 ((a a)+(a (a+a))) + + a a a + : 部分木 構文木 a a
46 各数式記法と構文木の関係 前置記法 : 中 左 右 +xy 節点の左を通過したときに書き出す 左 中 右 x + y 中置記法 : 左 中 右 x+y 節点の下を通過したときに書き出す 左 中 右 x + y 後置記法 : 左 右 中 xy+ 節点の右を通過したときに書き出す 左 中 右 x + y
47 例題 3.7 () 計算順序を見やすくするため括弧を追加 後置記法 :xxx+*xx+* ((x(xx+)*)(xx+)*) 構文木 * + x + x x x x * 前置記法 :**x+xx+xx 中置記法 :(x*(x+x))*(x+x)
48 例題 3.7 (2) 中置記法 :x+x*x+x 構文木 + x * x + x x * x x x x (x+(x*x))+x (((x+x)*x)+x) 前 :+*+xxxx 前 :++x*xxx 後 :xx+x*x+ 後 :xxx*+x+ 5 種類の構文木 3 * + + x x x x (x+x)*(x+x) 前 :*+xx+xx 後 :xx+xx+*
49 例題 3.7 (3) 中置記法 :x+x*x+x 構文木 4 + x + x * x x+((x*x)+x) 前 :+x+*xxx 後 :xxx*x++ x x 5 + x * x + x+(x*(x+x)) x 前 :+x*x+xx 後 :xxxx+*+
50 今回のまとめ ( 離散 ) グラフ 多重グラフ 単純グラフ 連結グラフ ( コンピュータで扱う場合の ) グラフの表現 ( 完全 正則 2 部 木 ) グラフ 同型グラフ 補グラフ 構文木
51 今回の宿題 演習問題,2,3 グラフの説明内の用語を覚える 集合表現 隣接行列 隣接リスト 表現を変換し表示するプログラムの作成
オートマトンと言語
オートマトンと言語 回目 4 月 8 日 ( 水 ) 章 ( 数式の記法, スタック,BNF 記法 ) 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/ 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 4 月 8 日 章 ( 数式の記法, スタック,BNF) 3 4 月 5 日
オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,
オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理
PowerPoint プレゼンテーション
コンパイラとプログラミング言語 第 3 4 週 プログラミング言語の形式的な記述 2014 年 4 月 23 日 金岡晃 授業計画 第 1 週 (4/9) コンパイラの概要 第 8 週 (5/28) 下向き構文解析 / 構文解析プログラム 第 2 週 (4/16) コンパイラの構成 第 9 週 (6/4) 中間表現と意味解析 第 3 週 (4/23) プログラミング言語の形式的な記述 第 10 週
Microsoft PowerPoint - ad11-09.pptx
無向グラフと有向グラフ 無向グラフ G=(V, E) 頂点集合 V 頂点の対を表す枝の集合 E e=(u,v) 頂点 u, v は枝 e の端点 f c 0 a 1 e b d 有向グラフ G=(V, E) 頂点集合 V 頂点の順序対を表す枝の集合 E e=(u,v) 頂点 uは枝 eの始点頂点 vは枝 eの終点 f c 0 a 1 e b d グラフのデータ構造 グラフ G=(V, E) を表現するデータ構造
<4D F736F F F696E74202D D8C7689E682C68DC5934B89BB F A2E707074>
分枝限定法データ構造 初期値 G=,Z= A{P0},N{P0},O=φ X[0]={#,#,#,#, G, Z} 節点 0 A リスト {P0} Nリスト {P0} P0=S アクセス済み O =φ X[0]={#,#,#,#, -10, Z} P0を分枝 節点 1 s # # A リスト {P0, P1, P2} N リスト {P0, P1, P2} O =φ X[0]={#,#,#,#, -10,
Taro-2分探索木Ⅰ(公開版).jtd
2 分探索木 Ⅰ 0. 目次 1. 2 分探索木とは 2. 2 分探索木の作成 3. 2 分探索木の走査 3. 1 前走査 3. 2 中走査 3. 3 問題 問題 1 問題 2 後走査 4. 2 分探索木の表示 - 1 - 1. 2 分探索木とは 木はいくつかの節点と節点同士を結ぶ辺から構成される 2 つの節点 u,v が直接辺で結ばれているとき 一方を親節点 他方を子節点という ある節点の親節点は高々
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
PowerPoint プレゼンテーション
解けない問題 を知ろう 保坂和宏 ( 東京大学 B2) 第 11 回 JOI 春合宿 2012/03/19 概要 計算量に関して P と NP NP 完全 決定不能 いろいろな問題 コンテストにおいて Turing 機械 コンピュータの計算のモデル 計算 を数学的に厳密に扱うためのもの メモリのテープ (0/1 の列 ), ポインタ, 機械の内部状態を持ち, 規則に従って状態遷移をする 本講義では
alg2015-6r3.ppt
1 アルゴリズムとデータ 構造 第 6 回探索のためのデータ構造 (1) 補稿 : 木の巡回 ( なぞり ) 2 木の巡回 ( 第 5 回探索 (1) のスライド ) 木の巡回 * (traverse) とは 木のすべての節点を組織だった方法で訪問すること 深さ優先探索 (depth-first search) による木の巡回 *) 木の なぞり ともいう 2 3 1 3 4 1 4 5 7 10
オートマトンと言語
授業のねらい アルゴリズムとデータ構造 III 木曜日 2 時限鈴木良弥 アルゴリズムとデータ構造 I,II で学んだ事柄の復習 事例を通じて, 今まで学んだアルゴリズムとデータ構造を組み合わせたアプリケーションのアルゴリズムとデータ構造を学ぶ 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/pulic/algorithm3/index.html 他の授業との関連科目間関係科目名キーワード関連度教科書,
Microsoft PowerPoint - 09re.ppt [互換モード]
3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,
Microsoft PowerPoint - アルデIII 02回目10月14日
アルゴリズムとデータ構造 III 2 回目 :10 月 14 日 文脈自由文法,CYK 法 授業資料 http://ir.cs.ymnshi.c.jp/~ysuzuki/lgorithm3/inde.html 1 2 3 4 5 6 7 8 9 授業の予定 ( 中間試験まで ) 10/07 スタック ( 後置記法で書かれた式の計算 ) 10/14 チューリング機械, 文脈自由文法 10/21 構文解析
Microsoft PowerPoint - 1.ppt [互換モード]
第 回オートマトンと正規表現 8//5( 火 ) 履修にあたって 8 年度情報数理学 8 年度大学院奇数セメスター ( 前期 ) 開講教室 : K6 大学院棟 D6( 次回から ) 担当 時限 : 火曜日 時限 (:5-:) 草苅良至 講義予定 計算機のいろいろな理論モデル言語理論 計算の限界計算量理論 問題の難しさ 現実問題と計算アルゴリズム論 参考書. Sipser 著 計算理論の基礎 共立出版
Microsoft PowerPoint - algo ppt [互換モード]
( 復習 ) アルゴリズムとは アルゴリズム概論 - 探索 () - アルゴリズム 問題を解くための曖昧さのない手順 与えられた問題を解くための機械的操作からなる有限の手続き 機械的操作 : 単純な演算, 代入, 比較など 安本慶一 yasumoto[at]is.naist.jp プログラムとの違い プログラムはアルゴリズムをプログラミング言語で表現したもの アルゴリズムは自然言語でも, プログラミング言語でも表現できる
Microsoft PowerPoint - DA2_2018.pptx
データ構造とアルゴリズム IⅠ 第 7 回幅優先 / 深さ優先探索 / トポロジカルソート. 基本的グラフアルゴリズム 無向グラフ 個の頂点と7 本の辺からなる無向グラフ 隣接リスト 各頂点に関して, 隣接する ( 直接, 辺で結ばれた ) 頂点集合をリストで表現 無向グラフ G=(V,E),V は頂点集合,E は辺集合.E の要素は頂点のペア {u,} によって表される.{u, } と {, u}
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
生命情報学
生命情報学 34 進化系統樹推定 阿久津達也 京都大学化学研究所 バイオインフォマティクスセンター 進化系統樹 進化系統樹 種間 もしくは遺伝子間 の進化の関係を表す木 以前は形態的特徴をもとに構成 現在は配列情報をもとに構成 有根系統樹と無根系統樹 有根系統樹 : 根 共通の祖先に対応 がある系統樹 無根系統樹 : 根のない系統樹 いずれも葉にのみラベル 種に対応 がつく 有根系統樹 無根系統樹
Microsoft PowerPoint - 13.ppt [互換モード]
13. 近似アルゴリズム 1 13.1 近似アルゴリズムの種類 NP 困難な問題に対しては多項式時間で最適解を求めることは困難であるので 最適解に近い近似解を求めるアルゴリズムが用いられることがある このように 必ずしも厳密解を求めないアルゴリズムは 大きく分けて 2 つの範疇に分けられる 2 ヒューリスティックと近似アルゴリズム ヒュ- リスティクス ( 発見的解法 経験的解法 ) 遺伝的アルゴリズム
Microsoft PowerPoint - 3.ppt [互換モード]
3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
Microsoft PowerPoint - DA2_2017.pptx
// データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
スライド タイトルなし
アルゴリズム入門 (8) ( 近似アルゴリズム ) 宮崎修一京都大学学術情報メディアセンター 近似アルゴリズムとは? 効率よく解ける問題 ( 多項式時間アルゴリズムが存在する問題 ) ソーティング 最短経路問題 最小全域木問題 効率よく解けそうにない問題 (NP 困難問題 ) 最小頂点被覆問題 MX ST MX CUT 本質的に問題が難しいのだが 何とか対応したい 幾つかのアプローチ ( 平均時間計算量
離散数学
離散数学 最短経路問題 落合秀也 その前に 前回の話 深さ優先探索アルゴリズム 開始点 から深さ優先探索を行うアルゴリズム S.pu() Wl S not mpty v := S.pop() I F[v] = l Tn, F[v] := tru For no u n A[v] S.pu(u) EnFor EnI EnWl (*) 厳密には初期化処理が必要だが省略している k 時間計算量 :O(n+m)
計算幾何学入門 Introduction to Computational Geometry
テーマ 6: ボロノイ図とデローネイ 三角形分割 ボロノイ図, デローネイ三角形分割 ボロノイ図とは 平面上に多数の点が与えられたとき, 平面をどの点に最も近いかという関係で分割したものをボロノイ図 (Voronoi diagram) という. 2 点だけの場合 2 点の垂直 2 等分線による分割 3 点の場合 3 点で決まる三角形の外接円の中心から各辺に引いた垂直線による分割線 2 点からの等距離線
4 月 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プロ
4 東京都立蔵前工業高等学校平成 30 年度教科 ( 工業 ) 科目 ( プログラミング技術 ) 年間授業計画 教科 :( 工業 ) 科目 :( プログラミング技術 ) 単位数 : 2 単位 対象学年組 :( 第 3 学年電気科 ) 教科担当者 :( 高橋寛 三枝明夫 ) 使用教科書 :( プログラミング技術 工業 333 実教出版 ) 共通 : 科目 プログラミング技術 のオリエンテーション プログラミング技術は
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる
Microsoft PowerPoint - DA2_2017.pptx
1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ
Microsoft PowerPoint - DA2_2018.pptx
1//1 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I). 単一始点最短路問題 第 章の構成 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ 特定の開始頂点 から任意の頂点
vecrot
1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向
【】三平方の定理
FdText 数学 3 年 : 中学 塾用教材 http://www.fdtext.com/txt/ 三角形 x を求めよ (3) (4) (5) (6) (3) (4) (5) (6) [ 解答 ] (1) 34 cm (2) 2 2 cm (3) 13cm (4) 2 7 cm (5) 5 3cm (6) 11 cm - 1 - 次の三角形, 台形の高さ (h) を求めよ (3) (4) (3)
第2回
明星大学情報学科 年後期 アルゴリズムとデータ構造 Ⅰ 第 回 Page 第 回基本データ構造 連結リストとその操作 -. リスト構造 データ部 と ポインタ部 で構成され ポインタをたどることによりデータを扱うことができる構造 -. 単方向リストとその操作 --. 単方向リスト 次のデータへのポインタを つだけ持っているデータ構造 ( データ部は 複数のデータを持っている場合もある ) データ部
数学の世界
東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a
PowerPoint Presentation
2012 年 11 月 2 日 複雑系の科学 第 3 回複雑ネットワーク その 1 東京大学大学院工学系研究科鳥海不二夫 複雑ネットワーク 1. 世の中すべてネットワーク~ 複雑ネットワーク入門 2. ネットワークを見る~ 複雑ネットワーク分析指標 3. 古典的ネットワーク~ランダム 格子ネットワーク 4. 世間は狭い~スモールワールドネットワーク 5. 不平等な世界 ~スケールフリーネットワーク
2015-2018年度 2次数学セレクション(整数と数列)解答解説
015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
DVIOUT
第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため
040402.ユニットテスト
2. ユニットテスト ユニットテスト ( 単体テスト ) ユニットテストとはユニットテストはプログラムの最小単位であるモジュールの品質をテストすることであり その目的は結合テスト前にモジュール内のエラーを発見することである テストは機能テストと構造テストの2つの観点から行う モジュールはプログラムを構成する要素であるから 単体では動作しない ドライバとスタブというテスト支援ツールを使用してテストを行う
立体切断⑹-2回切り
2 回切り問題のポイント 1. 交線を作図する 2つの平面が交わると 必ず直線ができます この直線のことを 交線 ( こうせん ) といいます 2. 体積を求める方法は次の 3 通りのどれか! 1 柱の体積 = 底面積 高さ 1 2 すいの体積 = 底面積 高さ 3 3 柱の斜め切り= 底面積 高さの平均 ただし 高さの平均が使えるのは 底面が円 三角形 正方形 長方形 ひし形 平行四辺形 正偶数角形のときだけ
<8D828D5A838A817C A77425F91E6318FCD2E6D6364>
4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
重要例題113
04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
比例・反比例 例題編 問題・解答
中学数学比例 反比例の問題 関数 ( 移行措置による追加 ) 比例 変域 座標 比例のグラフ 比例の式 比例の文章問題 座標と変域 反比例とグラフ 反比例の式 反比例の文章問題 比例と反比例のグラフ * ページ表示 を 見開き でご覧いただきますと 問題とその 答えが見やすくなります * このテキストは家庭学習の補助教材としてのみご利用いただけま す その他 ( 問題の改変 商用など ) の利用はご遠慮くださいま
2015-2017年度 2次数学セレクション(複素数)解答解説
05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点
情報工学実験 C コンパイラ第 2 回説明資料 (2017 年度 ) 担当 : 笹倉 佐藤
情報工学実験 C コンパイラ第 2 回説明資料 (2017 年度 ) 担当 : 笹倉 佐藤 2017.12.7 前回の演習問題の解答例 1. 四則演算のできる計算機のプログラム ( 括弧も使える ) 2. 実数の扱える四則演算の計算機のプログラム ( 実数 も というより実数 が が正しかったです ) 3. 変数も扱える四則演算の計算機のプログラム ( 変数と実数が扱える ) 演習問題 1 で行うべきこと
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
20~22.prt
[ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
Information Theory
前回の復習 情報をコンパクトに表現するための符号化方式を考える 情報源符号化における基礎的な性質 一意復号可能性 瞬時復号可能性 クラフトの不等式 2 l 1 + + 2 l M 1 ハフマン符号の構成法 (2 元符号の場合 ) D. Huffman 1 前回の練習問題 : ハフマン符号 符号木を再帰的に構成し, 符号を作る A B C D E F 確率 0.3 0.2 0.2 0.1 0.1 0.1
二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2
三角形 四角形 二等辺三角形の性質 () 二等辺三角形と正三角形 二等辺三角形 2つの辺が等しい三角形( 定義 ) 二等辺三角形の性質定理 二等辺三角形の底角は等しい 定理 2 二等辺三角形の頂点の二等分線は 底辺を直角に2 等分する 正三角形 3 辺が等しい三角形 ( 定義 ) 次の図で 同じ印をつけた辺や角が等しいとき の大きさを求めなさい () (2) (3) 65 40 25 (4) (5)
離散数学
離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則
プログラム言語及び演習Ⅲ
平成 28 年度後期データ構造とアルゴリズム期末テスト 各問題中のアルゴリズムを表すプログラムは, 変数の宣言が省略されているなど, 完全なものではありませんが, 適宜, 常識的な解釈をしてください. 疑問があれば, 挙手をして質問してください. 時間計算量をオーダ記法で表せという問題では, 入力サイズ n を無限大に近づけた場合の漸近的な時間計算量を表せということだと考えてください. 問題 1 入力サイズが
2015年度 岡山大・理系数学
5 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ を 以上の自然数とし, から までの自然数 k に対して, 番号 k をつけたカードをそれぞれ k 枚用意する これらすべてを箱に入れ, 箱の中から 枚のカードを同時に引くとき, 次の問いに答えよ () 用意したカードは全部で何枚か答えよ () 引いたカード 枚の番号が両方とも k である確率を と k の式で表せ () 引いたカード 枚の番号が一致する確率を
< D8C6082CC90AB8EBF816989A B A>
数 Ⅰ 図形の性質 ( 黄色チャート ) () () () 点 は辺 を : に外分するから :=: :=: であるから :=: == () 点 は辺 を : に内分するから :=:=: = + %= また, 点 は辺 を : に外分するから :=:=: == =+=+= 直線 は の二等分線であるから :=: 直線 は の二等分線であるから :=: 一方, であるから, から, から :=: :=:
機構学 平面機構の運動学
問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b
次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1
4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる
DVIOUT-17syoze
平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)
簡単な検索と整列(ソート)
フローチャート (2) アルゴリズム論第 2 回講義 2011 年 10 月 7 日 ( 金 ) 反復構造 ( 一定回数のループ処理 ) START 100 回同じ処理を繰り返す お風呂で子供が指をおって数を数える感じ 繰り返し数を記憶する変数をカウンター ( 変数名 I をよく使う ) と呼ぶ カウンターを初期化して, 100 回繰り返したかどうか判定してそうならば終了そうでなければ処理を実行して
