Microsoft PowerPoint - mp11-02.pptx
|
|
|
- たいち うえや
- 6 years ago
- Views:
Transcription
1 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected]
2 前回の復習 数理計画とは?
3 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題 ( 最適化問題 ) 数理計画で扱う, 基本的なモデル 線形計画問題 ( 線形最適化問題 ) ネットワーク計画問題 ( ネットワーク最適化問題 ) 非線形計画問題 ( 非線形最適化問題 ) 組合せ計画問題 ( 組合せ最適化問題 )
4 数理計画問題の定義 ( 復習 ) 数理計画問題は, 下記のように表される問題 目的関数 :,,, 最小 ( または最大 ) 制約条件 :,,, は変数,, に関する関数 ( 目的関数 ) はベクトル,,, の集合 ( 実行可能集合 ) S の要素は実行可能解 目的関数を最小 ( または最大 ) にする実行可能解は最適解 目的 : 最大化,, 条件 : , 0, 0 左の条件を全て満たす,, 全体
5 線形計画問題の例 : 生産計画問題 ( 復習 ) 目的 : 最大化 条件 : 目的 : 次関数 ( 線形関数 ) の 最大化 条件 : 0, 0, 0 1 次 ( 線形 ) の不等式 ( 等一般に, 号付き ) 目的が一次関数の最大化 ( 最小化 ) 条件がいずれも一次の不等式 ( 等号付き ) または等式 線形計画問題最大化 ( 最小化される関数 ) は目的関数条件は制約 ( 制約条件 )
6 今日の内容 線形計画問題 (2 章 ) 線形計画問題の標準形 (2.1 節 ) 基底解と最適解 (2.2 節 )
7 線形計画問題の標準形 線形計画問題は様々な形に定式化される 目的は最小化または最大化 制約条件は不等式 ( または ) または等式 変数には非負条件があってもなくても良い 問題の表現が不統一では不便 統一の形 ( 標準形 ) を扱う 目的関数 : 最小化制約条件 : 0, 0,, 0
8 標準形の性質 標準形の特徴 目的は最小化 制約条件はすべて等式 各変数には非負条件がある 目的関数 : 最小化制約条件 : 0, 0,, 0 任意の線形計画問題は, 標準形に書き換えることが可能 目的が最大化の場合, 最小化に書き換え可能 制約条件が不等式の場合, 等式に書き換え可能 非負条件のない変数は, 非負条件のある変数に置き換え可能
9 標準形への書き換え ( その 1) 目的関数 : 2 5 最大化制約条件 : , は非負条件なし (1) 最大化 を 最小化 に書き換え 目的関数に -1 を掛ければ良い 目的関数 : 2 5 最大化 この変更により, 実行可能集合は不変 最適解は不変 問題としては実質的に同じ, 6,1は書き換え前も後も実行可能解 目的関数 : 2 5 最小化
10 標準形への書き換え ( その 2) 目的関数 : 2 5 最小化制約条件 : , は非負条件なし (2) 不等式 を 等式 に書き換え 新しい非負変数 ( スラック変数 ) を追加すればよい スラック変数 , , 0 スラック変数 この変更により, スラック変数を無視すれば, 実行可能集合は不変 最適解は不変 問題としては実質的に同じ, 6,1は書き換え前の実行可能解,,, 6, 1, 46,27 は書き換え後の実行可能解
11 標準形への書き換え ( その 3) (3) 非負条件なしの変数 を 非負条件ありの変数 に書き換え 非負条件なしの変数 非負条件ありの 2 つの変数 と の差 に置き換える は任意の実数を表現できる 0 のとき :, 0 とおくと,, 0, 0 のとき : 0, とおくと,, 0,
12 標準形への書き換え ( その 4) 目的関数 : 2 5 最小化制約条件 : , は非負条件なし, 0, 0 を ただし 0, 0 に置き換え目的関数 : 2 5 最小化制約条件 : , 0, 0, 0, 0
13 2 変数の線形計画問題 ( その 1) 例題 目的関数 : 最小化制約条件 : , 0 問題の性質を知るために, 問題を図を使って表現する 最適解 実行可能領域 問題を図示してわかること 実行可能領域は平面上の凸多角形 最適解は凸多角形の境界に位置 凸多角形の頂点の 1 つは最適解
14 2 変数の線形計画問題 ( その 2) 例題 目的関数 : 2 最小化制約条件 : , 最適解 実行可能領域 問題を図示してわかること 実行可能領域は平面上の凸多角形 最適解は凸多角形の境界に位置 凸多角形の頂点の1つは最適解 最適解が複数存在することもあり
15 実行可能領域と最適解の性質 一般の n 変数の線形計画問題の場合 実行可能領域は,n 次元実数空間における凸多面体 凸多面体の頂点の中に, 必ず最適解が存在 最適解を見つけるには, 実行可能領域の頂点を全て調べればよい! 単純なやり方で頂点を調べると, 指数時間が必要 超立方体の場合, 頂点の数は 2 n 個 効率的に頂点を調べて最適解を見つける方法 シンプレックス法 ( 単体法 ) Image:Rhombicdodecahedron.gif /commons/4/48/hexahedron.gif
16 シンプレックス法 線形計画問題の最適解を求めるアルゴリズム G. B. Dantzig (1947) が提案 ピボット操作 により, 基底解 を繰り返し更新して, 最適解を求める 今日の残りの内容 : シンプレックス法の説明のための準備 基底解の説明 ピボット演算の説明
17 基底解の定義 ( その 1) 先ほどの例題を標準形にした問題 等式 m = 2 個 目的関数 : 最小化制約条件 : , 0, 0, 0 変数 n = 4 個 n m = 2 個の変数を 0 とおくと, 残りの変数値は一意に定まるこのようにして得られる解を基底解と呼ぶ 0 12, 8 0 2, 3
18 基底解の定義 ( その 2) 一般に, 標準形の等式が m 個, 変数が n 個のとき, n m 個の変数を 0 とおくと, 残りの変数値は一意に定まる ( 例外有り ) このようにして得られる解を基底解 目的関数 : 最小化制約条件 : 0, 0,, 0 0とおいた変数は非基底変数, それ以外は基底変数基底解の各変数値が非負 基底解は実行可能解 ( 実行可能基底解と呼ぶ )
19 基底解に関する注意 n m 個の変数を 0 とおいても, 残りの変数値は一意に定まらないことがある 無駄な ( 不要な ) 等式条件があるため 等式 m = 3 個変数 n = 4 個 n m = 1 目的関数 : 最小化制約条件 : , 0, 0, 0 =0 とおいても, 解は一意に定まらない 2 12, 2 8を満たす,, 全てが解理由 :3 番目の等式 =1 番目 2-2 番目 なので, 無駄 な等式基底解を考えるときは, 無駄 な等式が存在しないと仮定 無駄 な等式の有無は, 線形代数の知識を使えば判定可能
20 基底解と非基底変数の関係 非基底変数の選び方に応じて, 基底解は変わる変数は n 個, 非基底変数は n-m 個 非基底変数の組合せは n C n-m 個 n C n-m 個の基底解 目的関数 : 最小化制約条件 : 等式 m = 2 個 2 8 変数 n = 4 個 0, 0, 0, 0 4 C 2 = 4x3/2 = 6 個の基底解 基底, 非基底, : (2,3,0,0) 基底, 非基底, : (8,0, -12,0) 基底, 非基底, : (4,0,0,4) 基底, 非基底, : (0,4,4,0) 基底, 非基底, : (0,6,0,-4) 基底, 非基底, : (0,0,12,8) 2 つは実行不可能, 残りは実行可能
21 基底解と頂点の関係 実行可能な基底解は, 実行可能領域の頂点に対応している 実行可能な基底解の中に, 必ず最適解が存在する 基底, 非基底, : (2,3,0,0) 基底, 非基底, : (8,0, -12,0) 基底, 非基底, : (4,0,0,4) 基底, 非基底, : (0,4,4,0) 基底, 非基底, : (0,6,0,-4) 基底, 非基底, : (0,0,12,8) 6 4 最適基底解 : 最適な基底解のこと
22 退化した基底解 非基底変数の選び方が違っていても, 同じ基底解が得られることがある 退化した基底解と呼ぶ 目的関数 : 最小化制約条件 : , 0, 0, 0 基底, 非基底, : (4,0,0,0) 基底, 非基底, : (4,0,0,0) 基底, 非基底, : (4,0,0,0) 基底, 非基底, : (0,2,8,0) 基底, 非基底, : (0,6,0,-8) 基底, 非基底, : (0,0,12,4)
23 ピボット操作 ピボット操作 : 基底変数と非基底変数を 1 個ずつ入れ替えることピボット操作により, 基底解は 隣接する 基底解に変わる 基底, 非基底, : (2,3,0,0) 基底, 非基底, : (8,0, -12,0) 基底, 非基底, : (4,0,0,4) 基底, 非基底, : (0,4,4,0) 基底, 非基底, : (0,6,0,-4) 基底, 非基底, : (0,0,12,8)
24 基底解の最適性の判定 ( その 1) 実行可能基底解の中には必ず最適解が存在では, どうやって最適性を判定する? 基底変数を消去するとわかる! 例 : 実行可能基底解の基底変数が,,, の場合 目的関数 : 最小化制約条件 : 0, 0,, 0 非基底変数を0にする 基底変数の値が に決まる,,, この基底解は実行可能なので, 0 成立,,, 等式制約を変形して以下の形にする基底変数を左辺に, 非基底変数を右辺におく,,,
25 基底解の最適性の判定 ( その 2),,,,,,,, 基底変数を消去した問題 目的関数 : 最小化 ( は定数 ) 制約条件 :,,, 0,,, 0,,, 0 0, 0,, 0, 元の線形計画問題に代入して, 基底変数を消去
26 基底解の最適性の判定 ( その 3) 基底変数を消去した問題 目的関数 : 最小化 ( は定数 ) 制約条件 :,,, 0,,, 0,,, 0 0, 0,, 0,,, 0と仮定 目的関数は 0 のとき最小つまり, 現在の基底解のときに最小 現在の基底解は最適解
27 基底解の最適性の判定 ( その 4) 基底解の最適性の判定方法のまとめ : 1 基底解の基底変数を使って, 線形計画問題を次の形に書き換える 基底変数を消去した問題 目的関数 : 最小化 ( は定数 ) 制約条件 :,,, 0,,, 0,,, 0 0, 0,, 0 2,,, 0が成り立つか否かチェック全て非負 現在の基底解は最適解
28 レポート問題 ( 〆切 : 次回授業 13:05 まで ) 問 1: 右の線形計画問題を標準形に書き直せ. 目的関数 : 最大化制約条件 : = 2 4 9, 0 問 2: 右の線形計画問題の目的関数 : 最小化基底解をすべて計算せよ. 制約条件 : また, 対応する基底変数, 2 12 非基底変数の組合せを書け. 0, 0, 0, 0
29 レポート問題 ( 〆切 : 次回授業 13:05 まで ) 問 3: 右の線形計画問題に目的関数 : 最小化ついて考える制約条件 : , が基底変数の場合 2 8 2, が基底変数の場合 0, 0, 0, 0 それぞれの場合に対し, 対応する基底解が最適解か否かを判定せよ. 授業で説明したやり方で判定すること.
30 レポート作成上の注意 書籍やWebページなどを参考にしてレポートを作成した場合, その出典を必ず明記すること. 他の学生と共同でレポートを作成した場合は, その旨をレポートに書くとともに, レポート作成に関わった学生の名前を全て明記すること. これらが守られない場合には, 成績を ( 大幅 ) 減点することもあります.
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
Microsoft Word - 非線形計画法 原稿
非線形計画法条件付き最適化問題は目的関数と制約条件で示すが この中に一つでも 次式でないものが含まれる問題を総称して非線形計画法いう 非線形計画問題は 多くの分野で研究されているが 複雑性により十分汎用的なものは確立されておらず 限定的なものに限り幾つかの提案がなされている ここでは簡単な解法について紹介する. 制約なし極値問題 単純問題の解法 変数で表される関数 の極値は を解くことによって求められる
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
特殊なケースでの定式化技法
特殊なケースでの定式化技法 株式会社数理システム. はじめに 本稿は, 特殊な数理計画問題を線形計画問題 (Lear Programmg:LP) ないしは混合整数計画問題 (Med Ieger Programmg:MIP) に置き換える為の, 幾つかの代表的な手法についてまとめたものである. 具体的には以下の話題を扱った. LP による定式化 絶対値最小化問題 最大値最小化問題 ノルム最小化問題 MIP
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
情報システム評価学 ー整数計画法ー
情報システム評価学 ー整数計画法ー 第 1 回目 : 整数計画法とは? 塩浦昭義東北大学大学院情報科学研究科准教授 この講義について 授業の HP: http://www.dais.is.tohoku.ac.jp/~shioura/teaching/dais08/ 授業に関する連絡, および講義資料等はこちらを参照 教員への連絡先 : shioura (AT) dais.is.tohoku.ac.jp
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) [email protected].~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
Microsoft PowerPoint - ad11-09.pptx
無向グラフと有向グラフ 無向グラフ G=(V, E) 頂点集合 V 頂点の対を表す枝の集合 E e=(u,v) 頂点 u, v は枝 e の端点 f c 0 a 1 e b d 有向グラフ G=(V, E) 頂点集合 V 頂点の順序対を表す枝の集合 E e=(u,v) 頂点 uは枝 eの始点頂点 vは枝 eの終点 f c 0 a 1 e b d グラフのデータ構造 グラフ G=(V, E) を表現するデータ構造
オートマトンと言語
オートマトンと言語 回目 4 月 8 日 ( 水 ) 章 ( 数式の記法, スタック,BNF 記法 ) 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/ 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 4 月 8 日 章 ( 数式の記法, スタック,BNF) 3 4 月 5 日
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
複素数平面への誘い
いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示
2015年度 信州大・医系数学
05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部
数学の世界
東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
09.pptx
講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.
2016年度 京都大・文系数学
06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1
代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
数学○ 学習指導案
第 1 学年数学科数学 Ⅰ 学習指導案 1 単元名 二次方等式 二次不等式 2 単元の目標 二次方程式を因数分解や解の公式で導くことができるようにする 二次関数のグラフと 軸との共有点の個数を判別する方法を理解する 一次不等式や二次不等式の解法を 一次関数や二次関数のグラフを利用して理解する 二次不等式を含んだ連立不等式の解法を理解する 判別式をさまざまな事象の考察に応用することができるようにする
2010年度 筑波大・理系数学
00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
2011年度 東京大・文系数学
東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)
PowerPoint Presentation
応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
<8D828D5A838A817C A77425F91E6318FCD2E6D6364>
4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
Microsoft Word - 漸化式の解法NEW.DOCX
閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
線形代数とは
線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと
<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>
力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)
経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書
解析力学B - 第11回: 正準変換
解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
頻出問題の解法 4. 絶対値を含む関数 4.1 絶対値を含む関数 絶対値を含む関数の扱い方関数 X = { X ( X 0 のとき ) X ( X <0 のとき ) であるから, 絶対値の 中身 の符号の変わり目で変数の範囲を場合分けし, 絶対値記号をはずす 例 y= x 2 2 x = x ( x
頻出問題の解法 4. 絶対値を含む関数 4.1 絶対値を含む関数 絶対値を含む関数の扱い方関数 X = { X ( X 0 のとき ) X ( X
Microsoft PowerPoint - logic ppt [互換モード]
述語論理と ( 全称 ) ( 存在 ) 回の講義の概観 : 命題論理 ( 真理値 ) 2 述語論理 ( モデルと解釈 ) 意味論 semantics 命題論理 ( 公理と推論規則 ) 述語論理 ( 公理と推論規則 ) syntax 構文論 preview 述語論理は命題論理よりも複雑 例題 : 次の文は真か偽か? ( 曖昧な文です ) すべての自然数 x に対して x < y を満たすような自然数
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Microsoft Word - ASMMAC_6
No.6 セールス ミックスのシミュレーション 1 - 線形計画法による最適化技法 - 1. セールス ミックス分析の意義 損益分岐点分析の限界 単純な損益分岐点分析には資源の希少性は考慮されていないことである 損益分岐点分析をつうじて将来の売上高や費用を合理的に予測できても 予測を目標として設定できるかどうかは その予測値が使用可能な資源の範囲内にあるかどうかによる よって計画段階における CVP
振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫
6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ
2015-2017年度 2次数学セレクション(複素数)解答解説
05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ
以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する
< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂
公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法
公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si
公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある
(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)
6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3
2018年度 東京大・理系数学
08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母
2014年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G
論理学補足文書 7. 恒真命題 恒偽命題 1. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題
7. 恒真命題 恒偽命題. 恒真 恒偽 偶然的 それ以上分割できない命題が 要素命題, 要素命題から 否定 連言 選言 条件文 双 条件文 の論理演算で作られた命題が 複合命題 である 複合命題は, 命題記号と論理記号を 使って, 論理式で表現できる 複合命題の真偽は, 要素命題の真偽によって, 真になる場合もあれば, 偽になる場合もある 例えば, 次の選言は, A, の真偽によって, 真にも偽にもなる
曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ
伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ
2014年度 信州大・医系数学
4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ
PowerPoint プレゼンテーション
電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
