HBase Phoenix API Mars GPU MapReduce GPU Hadoop Hadoop Hadoop MapReduce : (1) MapReduce (2)JobTracker 1 Hadoop CPU GPU Fig. 1 The overview of CPU-GPU
|
|
|
- あおし やまがた
- 7 years ago
- Views:
Transcription
1 GPU MapReduce 1 1 1, 2, 3 MapReduce GPGPU GPU GPU MapReduce CPU GPU GPU CPU GPU CPU GPU Map K-Means CPU 2GPU CPU Improving MapReduce Task Scheduling for CPU-GPU Heterogeneous Environments Koichi Shirahata, 1 Hitoshi Sato 1 and Satoshi Matsuoka 1, 2, 3 MapReduce is a programming model that enables efficient massive data processing in a large-scale computing environment such as supercomputers and clouds. On the other hand, recent such large-scale computers tend to employ GPUs to enjoy its good peak performance and high memory bandwidth. However, scheduling MapReduce tasks onto CPUs and GPUs for efficient execution is difficult, since it depends on running application characteristics and underlying computing environments. To address this problem, we propose a hybrid online scheduling technique for GPU-based computing clusters, which minimizes the execution time of a submitted job using dynamic profiles of map tasks running on CPUs or GPUs. Our experimental results using a K-Means application show that the proposed technique achieves times faster than simple techniques, such as ones that CPU only or GPU only schedulings. 1. Google MapReduce 1) GPGPU 2) GPU GPU CUDA 3) TSUBAME2.0 3 GPU CPU GPU MapReduce CPU GPU CPU GPU I/O GPU CPU GPU CPU GPU CPU GPU CPU GPU Map CPU GPU Map CPU GPU CPU GPU Map Map ( 1) K-Means 4),5) Map CPU c 2010 Information Processing Society of Japan
2 HBase Phoenix API Mars GPU MapReduce GPU Hadoop Hadoop Hadoop MapReduce : (1) MapReduce (2)JobTracker 1 Hadoop CPU GPU Fig. 1 The overview of CPU-GPU hybrid processing on Hadoop GPU CPU 2GPU MapReduce GPGPU MapReduce GPGPU CPU 2.1 MapReduce MapReduce Google Map Shuffle Reduce 3 Map key-value Shuffle key value Reduce key-value key-value Map Reduce MapReduce MapReduce Hadoop 6) Phoenix 7) Mars 8) Hadoop GFS(Google File System) MapReduce Java MapReduce HDFS (3)TaskTracker (4) 3 JobTracker TaskTracker JobTracker Map Reduce Map ( 64MB) 2.2 GPGPU GPGPU (General-purpose computing on GPU) 2) GPU GPU GPU GPU GPU SIMD CPU GPU CPU CPU GPU GPU GPU CPU GPU GPU CPU GPU CPU 2 c 2010 Information Processing Society of Japan
3 ( 2) MapReduce Mapper Reducer Hadoop Pipes Hadoop Pipes Hadoop MapReduce C++ Map Reduce Streaming Pipes TaskTracker C++ Map Reduce JNI 2 Hadoop Streaming Hadoop Pipes Fig. 2 Hadoop Straming and Hadoop Pipes GPGPU NVIDIA C CUDA CUDA C 3. CPU GPU Map CPU GPU Hadoop GPU CPU GPU 3.1 Hadoop CUDA Hadoop CPU GPU GPU Hadoop Hadoop Java Java GPU Hadoop GPU Hadoop Streaming Hadoop Pipes JNI jcuda Hadoop Streaming Hadoop Streaming Hadoop Unix JNI JNI(Java Native Interface) JVM Java C C++ JVM Java jcuda jcuda(java for CUDA) 9) CUDA API Java Java CUDA GPU jcuda CUDA CUDA2.1 API CUDA2.1 API CUFFT OpenGL CUBLAS Hadoop CUDA Hadoop Streaming Hadoop Pipes Hadoop key JNI Java JNI Java 3 c 2010 Information Processing Society of Japan
4 Java jcuda CUDA2.1 CUDA2.2 jcuda CUDA Hadoop Pipes 3.2 CPU GPU MapRecuce MapReduce GPU Map CPU GPU CPU GPU Map CPU GPU GPU CPU GPU Map CPU GPU Map CPU Map CPU GPU GPU Reduce Map Reduce Map GPU Map Reduce 3.3 CPU GPU CPU GPU Map CPU GPU CPU GPU 10) Map CPU GPU Map CPU GPU CPU GPU CPU GPU 3.4 Map CPU GPU CPU GPU Map N CPU n GPU m CPU GPU a 1 GPU Map t Map 1 CPU 1 GPU CPU GPU a( ) a = mean map task time run on CP U mean map task time run on GP U 1 GPU Map t CPU at x CPU Map y CPU Map Map minimize f(x, y) subject to f(x, y) = max{ x n at, y m t} x + y = N x, y 0 : CPU x GPU y Map : N Map CPU GPU x, y CPU GPU Map x 0 Map GPU y 0 CPU 4 c 2010 Information Processing Society of Japan
5 Map Reduce Pipes Child JVM Map Reduce C++ Map Reduce key-value 2 CPU GPU C++ Map CPU GPU Child JVM GPU Pipes CPU Map CPU Map GPU GPU 3 Hadoop Fig. 3 The structure of task scheduling on Hadoop 4. Hadoop CUDA CPU GPU Map Hadoop CUDA JobTracker TaskTracker GPU Map Map ( 3) 4.1 Hadoop GPU Hadoop CUDA CUDA C C++ C++ Hadoop Pipes Hadoop Pipes C++ C++ Java Pipes Java key-value Map Reduce key-value Java TaskTracker TaskTracker Map Reduce Hadoop : (1)MapReduce JobClient (2)JobClient JobTracker (3)JobTracker TaskTracker Map Reduce (4)TaskTracker Child JVM CPU GPU CPU GPU Map CPU GPU CPU GPU Map CPU GPU CPU GPU JobTracker TaskTracker JobTracker Map TaskTracker CPU GPU JobTracker Map TaskTracker DataNode CPU GPU JobTracker TaskTracker Map CPU GPU Map Map CPU GPU CPU GPU TaskTracker TaskTracker JobTracker CPU Map CPU GPU GPU GPU GPU Map GPU TaskTracker GPU JobTracker Map Map 5 c 2010 Information Processing Society of Japan
6 4.2 Hadoop GPU Map JobTracker CPU GPU TaskTracker Map TaskTracker JobTracker TaskTracker JobTracker TaskTracker Task- Tracker Map Map Map JobTracker TaskTracker TaskTracker Map Map CPU GPU CPU GPU CPU GPU Map Map CPU GPU CPU GPU Map JobTracker TaskTracker Map CPU GPU 5. CPU GPU Map 5.1 CPU GPU CPU GPU Map K-Means Map GPU 1 CPU GPU AMD Opteron(Dual Core) Tesla S GHz GHzGHz 1.0GB 16GB Map K-Means Reduce Map K-Means K-Means (1)k (2) (3) k (4) 1 k GB TSUBAME GPU 1 64 Lustre 4 I/O 32MB write 180MB/s read 610MB/s CPU GPU 1 1 CPU 16 GPU 2 GPU Map GPU CPU GPU 1CPU 1GPU 15 CPU 1 GPU Map 2GPU 14 CPU 2 GPU Map 32MB Reduce Map CPU GPU CPU 2GPU GPU 15CPU 1GPU 14CPU 2GPU 6 c 2010 Information Processing Society of Japan
7 Map 20GB 32MB Map I/O GPU MapReduce GPU 1GPU CPU GPU Map CPU GPU 6. CPU GPU 10) CPU GPU CPU GPU CPU GPU 11) CPU GPU 12) CPU GPU 4 TSUBAME K-Means Fig. 4 Total Job Time of K-Means on TSUBAME CPU GPU 13) 7. CPU GPU MapReduce Hadoop Map GPU CPU GPU Map CPU GPU K-Means Map CPU GPU 7 c 2010 Information Processing Society of Japan
8 CPU 2GPU Map JST CREST ULP-HPC: support for enabling generalized reduction computations on heterogeneous parallel configurations, ICS 10: Proceedings of the 24th ACM International Conference on Supercomputing, New York, NY, USA, ACM, pp (2010). 11) Lu, C.-K., Hong, S. and Kim, H.: Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with Adaptive Mapping, MICRO 09, pp (2009). 12) Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. and Stoica, I.: Improving MapReduce Performance in Heterogeneous Environments, Technical report, EECS Department, University of California, Berkeley (2008). 13) Vol.47, No.SIG 1 8(ACS 1 6), pp (2006). 1) Dean, J. and Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters, OSDI 04, Sixth Symposium on Operating System Design and Implementation, pp (2004). 2) D.Owens, J., Houston, M., Luebke, D., Green, S., E.Stone, J. and C.Phillips, J.: GPU Computing, Proc IEEE, Vol.96, No.5, pp (2008). 3) John, N., Ian, B., Michael, G. and Kevin, S.: Scalable Parallel Programming with CUDA, Queue, Vol.6, No.2, pp (2008). 4) K., J.A. and C., D.R.: Algorithms for clustering data, Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1988). 5) Hong-tao, B., Li-li, H., Dan-tong, O., Zhan-shan, L. and He, L.: K-Means on Commodity GPUs with CUDA, Computer Science and Information Engineering, 2009 WRI World Congress, pp (2009). 6) Bialecki, A., Cordova, M., Cutting, D. and O Malley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware (2005). 7) Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. and Kozyrakis, C.: Evaluating MapReduce for Multi-core and Multiprocessor Systems, Proceedings of the 13th Intl. Symposium on High-Performance Computer Architecture (HPCA) (2007). 8) He, B., Fang, W., Luo, Q., K.Govindaraju, N. and Wang, T.: Mars: A MapReduce Framework on Graphics Processors, Parallel Architectures and Compilation Techniques, pp (2008). 9) Company for Advanced Supercomputing Solutions Ltd.: jcuda, 10) Vignesh, T. R., Wenjing, M., David, C. and Gagan, A.: Compiler and runtime 8 c 2010 Information Processing Society of Japan
DEIM Forum 2012 C2-6 Hadoop Web Hadoop Distributed File System Hadoop I/O I/O Hadoo
DEIM Forum 12 C2-6 Hadoop 112-86 2-1-1 E-mail: [email protected], [email protected] Web Hadoop Distributed File System Hadoop I/O I/O Hadoop A Study about the Remote Data Access Control for Hadoop
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
IPSJ-HPC
can effectively exploit the I/O performance of clusters with Gbit/sec-class flash memories. In this paper, we first outline our prototype MapReduce system which utilizes distributed key-value store. And
3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root
1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) [email protected] 2.
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 1170288 2017 2 28 Docker,.,,.,,.,,.,. Docker.,..,., Web, Web.,.,.,, CPU,,. i ., OS..,, OS, VirtualBox,.,
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP
Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf
1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
Run-Based Trieから構成される 決定木の枝刈り法
Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network
Microsoft PowerPoint - GPU_computing_2013_01.pptx
GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU
1 2 2 1, 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KUNIAKI SUSEKI, 2 KENTARO NAGAHASHI 2 and KEN-ICHI OKADA 1, 3 When there are a lot of injured people at a large-scale
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)
1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
3_23.dvi
Vol. 52 No. 3 1234 1244 (Mar. 2011) 1 1 mixi 1 Casual Scheduling Management and Shared System Using Avatar Takashi Yoshino 1 and Takayuki Yamano 1 Conventional scheduling management and shared systems
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst
情報処理学会インタラクション 2015 IPSJ Interaction 2015 15INT014 2015/3/7 1,a) 1,b) 1,c) Design and Implementation of a Piano Learning Support System Considering Motivation Fukuya Yuto 1,a) Takegawa Yoshinari 1,b) Yanagi
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
untitled
A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme
DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community
,,,,., C Java,,.,,.,., ,,.,, i
24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
Lyra 2 2 2 X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (
1,a) 2,b) 2,c) 1. Web [1][2][3][4] [5] 1 2 a) [email protected] b) [email protected] c) [email protected] [6] Lyra[5] ivisdesigner[6] [7] 2 Lyra ivisdesigner c 2012 Information Processing
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
GPU n Graphics Processing Unit CG CAD
GPU 2016/06/27 第 20 回 GPU コンピューティング講習会 ( 東京工業大学 ) 1 GPU n Graphics Processing Unit CG CAD www.nvidia.co.jp www.autodesk.co.jp www.pixar.com GPU n GPU ü n NVIDIA CUDA ü NVIDIA GPU ü OS Linux, Windows, Mac
<95DB8C9288E397C389C88A E696E6462>
2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,
Amazon EC2 IaaS (Infrastructure as a Service) HPCI HPCI ( VM) VM VM HPCI VM OS VM HPCI HPC HPCI RENKEI-PoP 2 HPCI HPCI 1 HPCI HPCI HPC CS
HPCI 1 2 3 4 5 1, 6 5 24 HPCI HPC OS HPC RENKEI-PoP Design of Advanced Software Deployment Infrastructure in HPCI Wide-area Distributed Environment Shinichiro Takizawa, 1 Masaharu Munetomo, 2 Atsuya Uno,
1 2 4 5 9 10 12 3 6 11 13 14 0 8 7 15 Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT 8192 2 16384 5 MOP
10000 SFMOPT / / MOPT(Merge OPTimization) MOPT FMOPT(Fast MOPT) FMOPT SFMOPT(Subgrouping FMOPT) SFMOPT 2 8192 31 The Proposal and Evaluation of SFMOPT, a Task Mapping Method for 10000 Tasks Haruka Asano
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
yamamoto_hadoop.pptx
Hadoop Streaming 2011/2/16 H22 ? SaaS (So5ware as a Service) (,etc.) PaaS (Pla?orm as a Service) (Google App Engine,, Mixi Appli etc.) IaaS (Infrastructure as a Service) (Amazon EC2) VMWare ESX, Hyper-
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
mobicom.dvi
13Dynamic Voltage Scaling on a Low-Power Microprocessor Johan Pouwelse 5 Koen Langendoen Henk Sips Faculty of Information Technology and Systems Delft University of Technology, The Netherlands 1 78724
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
JAXA-RR ICT ICT (Virtual Observatory = VO) JVO (Japanese Virtual Observatory) 1,2,3,4) 1 VO 1 Google Sky API (JVOSky) 1 VO Hadoop
JVO : 1 1 1 1 2 2 2 3 3 Experimental Construction of A Distributed All-Sky Astronomical Data Query and Analysis System Yuji SHIRASAKI 1, Yutaka KOMIYA 1, Masatoshi OHISHI 1, Yoshihiko MIZUMOTO 1, Yasuhide
BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO
DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: [email protected], {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention
IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki
Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
[4] ACP (Advanced Communication Primitives) [1] ACP ACP [2] ACP Tofu UDP [3] HPC InfiniBand InfiniBand ACP 2 ACP, 3 InfiniBand ACP 4 5 ACP 2. ACP ACP
InfiniBand ACP 1,5,a) 1,5,b) 2,5 1,5 4,5 3,5 2,5 ACE (Advanced Communication for Exa) ACP (Advanced Communication Primitives) HPC InfiniBand ACP InfiniBand ACP ACP InfiniBand Open MPI 20% InfiniBand Implementation
MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML
PBL 1 2 3 4 (MDD) PBL Project Based Learning MDD PBL PBL PBL MDD PBL A Software Development PBL for Beginners using Project Facilitation Tools Seiko Akayama, 1 Shin Kuboaki, 2 Kenji Hisazumi 3 and Takao
[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis
1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames
2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )
1,a) 2 4 WC C WC C Grading Student programs for visualizing progress in classroom Naito Hiroshi 1,a) Saito Takashi 2 Abstract: To grade student programs in Computer-Aided Assessment system, we propose
6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat
AUTOSAR 1 1, 2 2 2 AUTOSAR AUTOSAR 3 2 2 41% 29% An Extension of AUTOSAR Communication Layers for Multicore Systems Toshiyuki Ichiba, 1 Hiroaki Takada, 1, 2 Shinya Honda 2 and Ryo Kurachi 2 AUTOSAR, a
