Doctor Thesis Template
|
|
|
- ひとお みのしま
- 7 years ago
- Views:
Transcription
1 A Study of Variable Beam-tilted Microstrip Array Antenna
2 LAN(Local Area Network) LAN PC LAN LAN LAN 5.2GHz 20 25Mbps OFDM(Orthogonal Frequency Division Multiplexing)
3 (30,45,60[DEG.]) i
4 kbit/s Bluetooth ITS MMAC(Multimedia-Mobile-Access-Communications) MMAC GHz LAN HiSWANa(High Speed Wireless LAN a) LAN 20 25Mbps 2
5 1-1 LAN PC (LAN : Local Area Network) (LAN ) LAN (1) LAN (2) PC LAN (1) ( ) LAN (2) LAN LAN PC 1-2 PC 3
6 1-2 (NTT DoCoMo vol.8 No.4 pp56 ) ( PC) FTTH(Fiber To The Home) LAN LAN (IEEE) IEEE LAN 5.2GHz a 2.4GHz b 2.4GHz LAN 2.4GHz LAN 11Mbit/s 2.4GHz ISM(Industrial Scientific and Medical) Bluetooth LAN HiSWANa 5.2GHz 5.2GHz 5.2GHz 4
7 LAN 5.2GHz OFD M(Orthogonal Frequency Division Multiplexing ) ( 1-3) [1] OFDM 800ns 4 s 1-3 OFDM MSA MSA [1][2] MSA MSA MSA 5
8 λ/4 εr=4 0 [2] IE3D
9 1.2. LAN / ( ) 1 H 1 0[deg.] 30~60[deg.] 30~60[deg.] 0[deg.] 30~60[deg.] 30~60[deg.] 1-4 7
10 H h 1-5 H: m, h: 1m 8
11 LAN 2 /4 εr=2.6 εr=4.0 IE3D
12 / /
13
14 εr =2.6 εr =4.0 50Ω 12
15 W ε r h 2-5 ε 2 Z0 e = Z ε r 1 ε r + 1 εe = h 2 1 W εe (εr =2.6 h=0.8mm) 50Ω 2.26mm εr =4.0 L 1 5.2GHz L 1 =15mm λg c L1 = = = 15mm 2 2 f ε ( 5.2G) r 2-3 IE3D L 1 W 2 5.2GHz 13
16 2-6 L 1 =11.0mm W 2 =5.0mm 2-7 RL 15dB A L 2 z y x W 2 W 1 L 1 B z y 2-6 L 1 =λ/4=11.0mm, L 2 =λ/2=15.0mm, W 1 =2.0mm, W 2 =5.0mm A ; εr =2.6, B ; εr =4.0, 0.8mm
17 (0mm) 9mm (9mm) E 0.3GHz 10mm 0 9mm -10dB E 0 Return Loss[dB] offset 0mm 1mm 3mm 5mm 7mm 9mm 10mm Frequency[GHz] 2-7 ( ) 15
18 0mm 9mm 2-8 The radiation patch offset 0mm 9mm 2-9 E 16
19 IE3D (2mm) (7mm) mm E mm E
20 L 1 W 1 L 2 50mm 50mm L 1 =11mm L 2 =15mm W 1 = 5mm 2-10 L 1 =11.0mm, L 2 =15.0mm, W 1 =5.0mm, l 1 =50mm 50mm 15mm 50mm 15mm
21 0-5 Return Loss[dB] d=7mm d=2mm mea. cal. mea. cal. d Frequency[GHz] 2-12 Mea. Cal E (d=2mm) 19
22 Mea. Cal E (d=7mm)
23 g θ N 2-4 g ( θ ) N = a e n nu d n= 0 n u = ndsinθ jnu ( ) d j sin ( ) ( ) ( ) (1 2 θ θ = θ θ = ± ) ( θ ) g F D je D π
24 y 0 d x H (d= /4)
25 G( θ ) = F( θ) D( θ) F( θ ) = 1+ sin ( 2πdsinθ) j cos( 2πdsinθ) 2-7 d d T 90 T (a) 90 T 28mm 2-20 (b) 23
26 L1 l2 l1 L2 d z x y B ( 4.0) ε r = z y A 0. 8mm 2-17 MS L 1 =λ/2=15.0mm, L 2 =λ/4=11.0mm l 1 =30.0mm, l 2 =30.0mm, 0.8mm 24
27 0 Return Loss[dB] T-junction offset 0mm 24mm 28mm 4 5 Frequency[GHz] (a)t-junction offset 0mm (b)t-junction offset 28mm
28 (a)t-junction offset 0mm (b)t-junction offset 28mm
29 L 1 d L L 1 =λ/4=11.0mm, A; εr = mm (a)(b) 2-23 (a) 2 (b) 90 E (a) (b) 90 3dB
30 a b a b E d 28
31 d d=0.5λ(20mm) a 2-25(a) 29 a 1mm d=0.3λ(12mm) E 2-25 b 43 d=0.4λ(16mm) 2-25 c 31-15dB - 0 Return Loss[dB] d=20mm d=12mm(the one-side) d=16mm(the both-side) Frequency[GHz]
32 (1) d=0.5λ 29.0 d=0.5λ(20mm) λ (2) 43 d= 0.3λ (12mm) (3) 31 d= 0.4λ (16mm) 2-25 E λ 3mm 41-15dB 30
33 2.5. 3mm 3mm 41[deg.] d= IE3D mm 125mm GHz 4.76GHz 2-30 (a) 2-30(b) 31
34 E 4 44GHz 4 76GHz l3 L1 d z l2 x B ( 4.0) ε r = 0.8mm 2-27 L 1 =λ/2=15.0mm, L 2 =λ/4=11.0mm l 1 =30.0mm, l 2 =30.0mm, l 3 =12.5mm, l 4 =7.0mm, 0.8mm 32
35 12.5cm Square patches 7.0cm Return Loss[dB] Frequency[GHz] cal.(infinite) cal.(finite) mea
36 (a)4.44ghz (b)4.76ghz 2-30 Cal.(IE3D) Mea
37 Cal.(IE3D) Mea λ/ [7] 35
38 λ/4 L λ 0.6λ
39 2-35 L L 1 L L 2-34 ( ) L 1 =λ/2=15.0mm, L 2 =0.4λ g =22.0mm, L 3 =50.0mm H=24.0mm, ; εr =4.0, 0.8mm 37
40 Mea. Cal E T 90 λ λ 38
41 mm d d=0.5λ(20mm) a 2-38 a a 1mm d=0.3λ(12mm) E b 60 d=0.4λ(16mm) c 45-10dB 39
42 l3 L3 L1 L2 d l1 l2 l4 z x y z H B ( 4.0) ε r = y A 2-36 L 1 =λ/2=15.0mm, L 2 =λ/4=11.0mm, L 3 =0.4λ=22.0mm l 1 =30.0mm, l 2 =30.0mm, l 3 =12.5mm, l 4 =7.0mm, H=24.0mm, 0.8mm 40
43 0 Return Loss[dB] Frequency[GHz] No offset oneside patch moved bothside patches moved
44 (1) d=0.5λ -36 d=0.5λ(20mm) λ (2) -60 d= 0.3λ (12mm) (3) -45 d= 0.4λ (16mm) dB 56 42
45 3mm 3mm 56[deg.] d= mm 125mm Stacked patch 24mm
46 E 4.76GHz Return Loss[dB] Frequency[GHz] cal.(infinite) cal.(finite) mea
47 Mea. Cal E 2.4. (30,45,60[deg.]) E 30 d 2-43(1) d=0.15λ 7mm d=0.20λ 20 5mm E 2-45(a) -20dB
48 45 d=0.10λ 2-43(b) d=0.20λ 7mm E 2-45(b) -20dB d=0.05λ 60 3mm (a)(b) -15dB E 2-45(c) 60 5mm 0.15λ (a) 30[deg.] 5mm 7mm 0.2λ 7mm (b)45[deg.] 3mm 0.05λ 3mm (c)60[deg.]
49 0 Return Loss[dB] (a) 30[deg.] (b) 45[deg.] (c) 60[deg.] Frequency[GHz]
50 (a) 30[deg.] (b)45[deg.] (c)60[deg.]
51 λ
52
53 51
54 [1] 5GHz OFDM AP [2] [3] [4] 1987 [5] 1998 [6] p
55 [1] AP May2001 [2] 2 B-1-77 Oct 2001 [3] B March 2001 [4] Kozue HAMAMOTO Hiroyuki ARAI Kenya YONEZAWA and Toshiyuki MAEYAMA " Variable Beam Tilt Microstrip Array for 5GHz Wireless Access System " Asia-Pacific Microwave Conference APMC 2001 TU3E-5 December
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE
SMK SMK Corporation Kenji OTSUKA AV AV RF 2.4GHz ISM 2.4GHz ISM 2.4GHz RF IEEE 802.15.4 ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE 802.15.1 2.4GHz 3Mbps G-FSK FHSS PC LAN IEEE 802.11b 2.4GHz 11Mbps
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
2005 1
2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
12-7 12-7 12-7 12-7 12-8 12-10 12-10 12-10 12-11 12-12 12-12 12-14 12-15 12-17 12-18 10 12-19 12-20 12-20 12-21 12-22 12-22 12-23 12-25 12-26 12-26 12-29 12-30 12-30 12-31 12-33 12-34 12-3 12-35 12-36
A Study of Small Built-in Antenna for Hand held Terminal
A Study of Smll Built-in Antenn for Hnd held Terminl 6 9 IMT-2 Interntionl Mobile Telecommunictions-2 2GHz /4 PDA Personl Digitl Assistnt 2 FDTD Finite Difference Time Domin method 6 FDTD 3.6 2.5mm 2.25GHz
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )
n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n
SIP SDP(Session Description Protocol) RTSP(Real-time Streaming Protocol) RTP(Real-time Transport Protocol) IP 1 [1] 1: IP RTP(Real-Time RFC1889 Transf
C4 [email protected] 1 IP 1.1 1. IP IP 2. 1.2 1.2.1 IP IP (Internet Protocol telephone) IP VoIP(Voice over Internet Protocol) IP IP (Network Access Control) IP IP (Call Control) (Terminal Control)
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
- 1-150 khz18 GHz CATV MATV IEC 60728-2 A B (ITE) 2 (3) 4.1 (1) 3 (CISPR) 1 (CISPR 16-1-1 2.1 2006) (CISPR 16-1-2 1 2003 12004) (CISPR 16-1-3 2.0 2004) (CISPR 16-1-4 2.0 2007) 30 MHz 1000 MHz (CISPR 16-1-5
Gmech08.dvi
63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
Gmech08.dvi
51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r
q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ
H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A
10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11
0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2
24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216
A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133
A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...
知能科学:ニューラルネットワーク
2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,
1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1
1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
limit&derivative
- - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................
デジタル通信を支える無線技術
Aug. 02, 2008 Copyright 2008 Niigata Internet SOCiety & I.Suzuki All Rights Reserved. 2 1. LAN 2. 3. LAN 4. 802.11 3 4 1. LAN 2. 3. LAN 4. 802.11 5 WMAN 50Km WiMax WLAN 100m 802.11 WPAN 10m ZigBee Bluetooth
重力方向に基づくコントローラの向き決定方法
( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro [email protected] 1 M M v 0, v 1, v 2 v 0 v
JGN 2 KDDI NiCT IT 17518 NiCT IT PC ( ) [2], : " ", (%) 100 0 0 T 1 T 2 t1.2 tx t3 t4 t6 (t) 2005 Mobile PC PDA Mobile PC PDA Mobile PC Mobile phone WAN Internet JGN II GIS Japan Gigabit
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
LD
989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic
07.報文_及川ら-二校目.indd
8 01 01 4 4 1 5 16 18 6 006 H 18 4 011 H 6 4 1 5 1 5 007 H 19 5 009 1 5 006 007 009 011 9 10 4 000 H 1 4 5 004 H 16 4 004 009 H 1 5 4 4 5 1 4 006 011 1 1 4m 5m 10m 007 1 7 009 009 1 5 10 1 000kg 10a 006
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP
1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP
LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)
338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x
B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π
8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B
K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI
65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)
c 2009 i
I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
( ) ( ) 1729 (, 2016:17) = = (1) 1 1
1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2
(Communication and Network) 1 1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2 1.1 AM s(t) : A(αs(t) + 1) cos 2πf c t A, α : s(t) = cos
1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π
. 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()
,, 2. Matlab Simulink 2018 PC Matlab Scilab 2
(2018 ) ( -1) TA Email : [email protected], [email protected] : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................
JIS Z803: (substitution method) 3 LCR LCR GPIB
LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4
... A F F l F l F(p, 0) = p p > 0 l p 0 P(, ) H P(, ) P l PH F PF = PH PF = PH p O p ( p) + = { ( p)} = 4p l = 4p (p 0) F(p, 0) = p O 3 5 5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 =
(1) (2) (3) (4) (5) (6) (7) 4 (8) (9) () LAN 1 2 3 ( ) () () () 30 20 5 5 450 450 5 5 30 10 20 15 36 30 6 6 450 450 6 6 36 8 30 14 50 35 20 20 450 450 20 20 50 8 35 14 100 70 20 20 450 450
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
