3 MathJax HTML \ Y \ Y mathjax.html <html> <head> <script type="text/javascript" src=" /2.7.0/MathJax.js
|
|
|
- ふじきみ ひろもり
- 7 years ago
- Views:
Transcription
1 MathJax 1 MathJax MathJax JavaScript : MathJax IE6 Chrome 0.2 Safari 2 Opera 9.6 MathJax MathJax 2010 MathJax MathJax JavaScript MathJax JavaScript MathJax MathJax 2 HTML MathJax HTML HTML mathjax.html html ) mathjax.html <html> <head> <title>mathjax </title> </head> MathJax </html> MathJax MathJax TeX 1
2 3 MathJax HTML \ Y \ Y mathjax.html <html> <head> <script type="text/javascript" src=" /2.7.0/MathJax.js?config=TeX-AMS_CHTML"></script> <title>mathjax </title> </head> MathJax <br> \(ax+b=0\) \[ x = -\frac{b}{a} \] </html> <head></head> <script type="text/javascript" src=" rg/mathjax/latest/mathjax.js?config=tex-ams_chtml"></script> MathJax <br> \( \) \[ \] \frac{}{} HTML MathJax ax + b = 0 x = b a \ 2
3 \ Y TeX TeX mathjax.html \(ax^{2}+bx+c=0\) \[ x = \frac{-b\pm\sqrt{b^{2}-4ac}}{2a} \tag{1} \] ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (1) ^{} e^{x} \pm ± \sqrt{} n n \sqrt[n]{} \tag{} \tag{*} ( ) \pm a ±a \pma 3
4 4 1 HTML \[ \sum_{k=1}^{n} a_{k} = a_{1} + a_{2} + \dots + a_{n} \] n a k = a 1 + a a n k=1 \sum_{}^{} _{} ^{} _{} \dots 2 HTML \[ \int_{-\infty}^{\infty} e^{-x^{2}} \, dx = \sqrt{\pi} \] e x2 dx = π \int_{}^{} \infty \, \pi π 4
5 3 HTML \(f(x)\) \[ f (x) = \lim_{\delta x \to 0} \frac{ f(x+\delta x) - f(x) }{\Delta x} \] f(x) \lim_{} \to \Delta f f(x + x) f(x) (x) = lim x 0 x 4 HTML \[ \int \tan\theta \, d\theta = \int \frac{\sin\theta}{\cos\theta} \, d\theta = -\log \cos\theta + C \] tan θ dθ = sin θ dθ = log cos θ + C cos θ \sin, \cos, \tan, \log sin, cos, tan, log sin sin s i n \theta θ 5
6 5 HTML \begin{align} \cos 2\theta &= \cos^{2} \theta - \sin^{2} \theta \\ &= 2\cos^{2} \theta - 1 \\ &= 1-2\sin^{2} \theta \end{align} cos 2θ = cos 2 θ sin 2 θ = 2 cos 2 θ 1 = 1 2 sin 2 θ \begin{align}\end{align} \\ & 6 HTML \[ x = \begin{cases} x & \text{\(x\ge0\) } \\ -x & \text{\(x<0\) } \end{cases} \] x = { x x x 0 x < 0 \begin{cases}\end{cases} & \\ \text{} \ge \le 6
7 7 HTML \(n \times n\) \[ A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix} \] \(A^{-1}\) \(\det A \neq 0\) n n a 11 a a 1n a 21 a a 2n A = a n1 a n2... a nn A 1 det A 0 \times \begin{pmatrix}\end{pmatrix} & \\ \ldots, \vdots, \ddots \det det \neq pmatrix ( ) bmatrix [ ] Bmatrix { } vmatrix Vmatrix matrix 7
8 5 MathJax MathJax config.js mathjax.html config.js window.mathjax = { TeX: { equationnumbers: {autonumber: "AMS"}, Macros: { x: {\\times}, bm: [ {\\boldsymbol{#1}},1], dd: [ {\\frac{\\partial #1}{\\partial #2}},2] } }, CommonHTML: { scale: 110, mtextfontinherit: true } }; equationnumbers \[ \] \begin{equation} \end{equation} Macros x \times \x bm 1 \bm{} \boldsymbol{a} \bm{a} dd 2 \dd{}{} \frac{{\partial A}{\partial B} \dd{a}{b} scale 110% mtextfontinherit false MathJax 8
9 HTML mathjax.html <html> <head> <script type="text/javascript" src="config.js"></script> <script type="text/javascript" src=" /2.7.0/MathJax.js?config=TeX-AMS_CHTML"></script> <title>mathjax </title> </head> \(\bm{b}(x,y,z)\) \begin{equation} \bm{b} = \nabla \x \bm{a} \label{a} \end{equation} \begin{equation} \nabla \cdot \bm{b} = \dd{b_{x}}{x} + \dd{b_{y}}{y} + \dd{b_{z}}{z} \end{equation} 0 \eqref{a} \(\bm{a}\) \(\bm{b}\) </html> \nabla \cdot <head></head> MathJax config.js HTML B(x, y, z) B = A (1) B = B x x + B y y + B z z (2) 0 (1) A B \label{} \eqref{} a \eqref{a} \notag 9
10 f(x) = f(x) = e iθ = cos θ + i sin θ n=0 f (n) (a) (x a) n n! ( ) 1 exp (x µ)2 2πσ 2 2σ 2 \pi, \mu, \sigma π, µ, σ \exp exp \left( \right) \left \right () [] \{\} 4 m d2 r dt 2 = F \vec{} \overrightarrow{} AB 5 d dt ( ) L L q q = 0 \partial \mathcal{} \mathcal{l} \dot{} 10
11 6 ˆf(ξ) = f(x) e 2πix ξ dx R n \hat{} ˆ \xi ξ \mathbb{} \cdot 7 \alpha α \oint f(α) = 1 f(z) 2πi C z α dz 8 A dv = A n ds V V \iint, \iiint, \iiiint,, \nabla \boldsymbol{} 9 iħ ( ) t ψ(r, t) = ħ2 2m 2 + V (r, t) ψ(r, t) \hbar ħ \psi ψ \biggl( \biggr) \bigl, \Bigl, \biggl, \Biggl l r l m 11
12 10 H 2 (g) O 2(g) = H 2 O(l) kj \mathrm{} \mathrm{} \, 11 A B = { x x A x B } \{ \} {} {} \cap, \cup, \wedge, \vee,,, \in, \ni, \notin, \subset, \supset,, /,, \emptyset, \forall, \exists, \neg,,, 12 1 Γ (z) = zeγz n=1 ( 1 + z ) e z/n n \gamma, \Gamma, \vargamma γ, Γ, Γ \prod_{}^{} 13 E = ρ ε 0, B = 0, E = B t B = µ 0 i + 1 E c 2 t \rho, \varepsillon, \mu ρ, ε, µ \times \begin{align}\end{align} & & & 12
13 A \ \quad \qquad \quad 2 \, \quad 3/18 \: \quad 4/18 \; \quad 5/18 \! \quad 3/18 \alpha \beta \gamma \delta \epsilon \varepsilon α β γ δ ϵ ε \zeta \eta \theta \vartheta \iota \kappa ζ η θ ϑ ι κ \lambda λ \mu µ \nu ν \xi ξ o o \pi π \varpi \rho \varrho \sigma \varsigma \tau ϖ ρ ϱ σ ς τ \upsilon \phi \varphi \chi \psi \omega υ ϕ φ χ ψ ω \Gamma \vargamma \Delta \vardelata \Theta \vartheta Γ Γ Θ Θ \Lambda \varlambda \Xi \varxi \Pi \varpi Λ Λ Ξ Ξ Π Π \Sigma \varsigma \Upsilon \varupsilon \Phi \varphi Σ Σ Υ Υ Φ Φ \Psi \varpsi \Omega \varomega Ψ Ψ Ω Ω (x) [x] \{x\} \langle x \rangle \lfloor x \rfloor \lceil x \rceil (x) [x] {x} x x x x x \ x\ x / / \backslash \ 13
14 + + - \pm ± \mp \times \div \ast \star \cdot \bullet \circ \bigcirc \setminus \ \wr \cap \cup \sqcap \sqcup \wedge \vee \oplus \ominus \otimes \oslash \odot \dagger \ddagger \amalg = = \neq \doteq \doteqdot \equiv \sim \backsim \simeq \backsimeq \eqsim \approx \approxeq. = \cong = \propto \varpropto \perp \mid \shortmid \parallel \shortparallel \therefore \because \risingdotseq \fallingdotseq < < > > \ll \gg \lll \ggg \le, \leq \ge, \geq \leqq \geqq \leqslant \geqslant \lesssim \gtrsim \subset \supset \subseteq \supseteq \subseteqq \supseteqq \in \ni \notin / \backepsilon \not \not\equiv \emptyset \varnothing \infty \aleph \complement \partial \digamma \hbar \hslash \imath \jmath ℵ ϝ ħ ħ ı ȷ \Bbbk k \varkappa κ \ell l \Re R \Im I \mho \eth ð \prime \backprime \surd \nabla \triangle \square \blacksquare \bigstar \spadesuit \heartsuit \diamondsuit \clubsuit \angle \measuredangle \sphericalangle \top \bot \diagup \diagdown \forall \exists \nexists \neg, \lnot \sharp \flat \natural 14
15 \sin sin \cos cos \tan tan \cot cot \sec sec \csc csc \arcsin arcsin \arccos arccos \arctan arctan \sinh sinh \cosh cosh \tanh tanh \coth coth \exp exp \log log \ln ln \lg lg \arg arg \Pr Pr \det det \hom hom \ker ker \dim dim \deg deg \gcd gcd \bmod mod \pmod{n} (mod n) \lim lim \min min \max max \inf inf \sup sup \liminf lim inf \limsup lim sup \sum \prod \coprod \bigcap \bigcup \biguplus \bigsqcup \bigwedge \bigvee \bigoplus \bigotimes \bigodot \int \oint \iint \iiint \iiiint \idotsint _{}^{} \rightarrow, \to \leftarrow, \gets \longrightarrow \longleftarrow \leftrightarrow \longleftrightarrow \mapsto \longmapsto \hookrightarrow \hookleftarrow \rightleftarrows \leftrightarrows \rightrightarrows \leftleftarrows \uparrow \downarrow \updownarrow \upuparrows \downdownarrows \nearrow \searrow \nwarrow \swarrow \Rightarrow \Leftarrow \Longrightarrow = \Longleftarrow = \Leftrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \rightleftharpoons \leftrightharpoons \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright 15
16 \vec{x} \bar{x} \tilde{x} \breve{x} \hat{x} \check{x} x x x x ˆx ˇx \acute{x} x \grave{x} \dot{x} \ddot{x} \dddot{x} \ddddot{x} `x ẋ ẍ... x... x \overrightarrow{xyz} \overleftarrow{xyz} \overline{xyz} \underline{xyz} \widetilde{xyz} \widehat{xyz} xyz xyz xyz xyz xyz xyz 16
プレゼン資料 - MathML
MathML2006.03 MathML MathML2006.03-0.1 MathML 2 URL http://www.hinet.mydns.jp/~hiraku/presentation/?mathml2006.03 MathML2006.03-0.2 1. 1. Web MathML 2. MathML 3. CMS Wiki 2. CMS + MathML = 1. tdiary Hiki
1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS
L A TEX 2ε 16 10 7 1 L A TEX 2ε L A TEX 2ε TEX Stanford Donald E. Knuth 1.1 1.1.1 Windows, Linux, Macintosh OS Adobe Acrobat Reader Adobe Acrobat Reader PDF 1.1.2 1 1.2 L A TEX 2ε Unicode L A TEX 2ε L
cpall.dvi
137 A L A TEX LATEX 1 TEX 2 (American Mathematical Society) L A TEX L. Lamport, L A TEX: a Document Preparation System, Addison Wesley (1986). Edgar Cooke, L A TEX (1990). LATEX2 ε (2003). LATEX A.1 L
1.5,. ( A, 7, * ) Emacs,., <Return>., <Delete>. <Delete>, Delete. <Delete>,. 1.6,.,, Emacs.,. ( ), ( ),,. C-x,., Emacs.,. C-x C-f ( )... C-x C-s. Emac
L A TEX 1 1.1 Emacs Emacs, (, CTRL, CTL ) (, )., CONTROL META,. C-< >, < >., C-f, f. ESC < >, < >. < >,. Emacs, C-x C-c.,. C-v. ESC v. 1.2., (previous) (next) (forward) (backward)., C-p, C-n, C-f, C-b,.
visit.dvi
L A TEX 1 L A TEX 1.1 L A TEX,. L A TEX,. ( Emacs). \documentclass{jarticle} \begin{document} Hello!!, \LaTeX Hello!!, L A TEX L A TEX2ε. \LaTeXe. \end{document},. \, L A TEX. L A TEX. \LaTeX L A TEX..
L A TEX Copyright c KAKEHI Katsuhiko All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{< >} \author{< >} \date{< >} < > \be
L A TEX Copyright c KAKEHI Katsuhiko 1996-1998 All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{} \author{< >} \date{} \begin{document} \end{document} article jarticle report jreport
web04.dvi
4 MATLAB 1 visualization MATLAB 2 Octave gnuplot Octave copyright c 2004 Tatsuya Kitamura / All rights reserved. 35 4 4.1 1 1 y =2x x 5 5 x y plot 4.1 Figure No. 1 figure window >> x=-5:5;ψ >> y=2*x;ψ
2 (2) WinShell 2 (3) WinShell L A TEX ( ) ( ) 2 1 L A TEX.tex L A TEX WinShell (4) WinShell 2 L A TEX L A TEX DVI DeVice Independent (5) WinShell 2 DV
1 L A TEX 2014 1 L A TEX [ 1 ] 1 : L A TEX 1.1 L A TEX L A TEX ( ) L A TEX L A TEX ( ) ( ) L A TEX \ \ Windows Y= \ Windows Y= 1.2 L A TEX WinShell Windows L A TEX WinShell Windows L A TEX WinShell L A
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[
L A TEX 22 7 26 1. 1.1 \begin{itemize \end{itemize 1.2 1. 2. 3. \begin{enumerate \end{enumerate 1.3 1 2 3 \begin{description \item[ 1] \item[ 2] \item[ 3] \end{description 2. label \ref \figref \fgref
PowerPoint プレゼンテーション
秋学期情報スキル応用 田中基彦教授, 樫村京一郎講師 ( 工学部 共通教育科 ) DTP の基礎 (2) 1. 日本語の入力法 2. 数式, グラフィック, テーブル - 数式 のみは理数系 3. 相互参照, 目次, 文献参照 - あの項目はどこにある? * 提出問題 5 DTP について 提出問題 5 LaTeX 言語を用いる DTP (DeskTop Publishing) について, つぎの各問に答えなさい
PowerPoint プレゼンテーション
LaTeX Cheat Sheet 2015 ver. 2015/10/16 Matsuoka Ryo このスライドについて 1. このスライドは 北 大 理 学 部 を 中 心 とした 有 志 で 行 われている TeX 勉 強 会 で 使 われていた 資 料 です 2. このスライドの 不 正 確 な 記 述 によって 生 じた いかなる 損 害 に 関 しても 作 者 は 責 任 を 負 いかねます
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
Microsoft Word - ASCII変換文字一覧.docx
Alpha Α alpha α Beta Β beta β Chi Χ chi χ Delta Δ delta δ Epsilon Ε epsilon ϵ Eta Η eta η Gamma or G Γ gamma γ Iota Ι iota ι Kappa Κ kappa κ Lambda Λ lambda λ Mu Μ mu μ Nu Ν nu ν Omega Ω omega ω O Ο o
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
( ) ± = 2018
30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy
z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1
1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1
sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z
B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s
. 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a
009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin
y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =
[ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.
() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (
IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1
Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6
Z: Q: R: C:
0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x
DVIOUT-fujin
2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
1. A0 A B A0 A : A1,...,A5 B : B1,...,B
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)
(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: [email protected] i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................
2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n
. X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n
1) 単項 二項演算子 + 正記号 負記号 プラスマイナス +- 3 ±3 -+ マイナスプラス neg ブール演算 NOT neg p p and ブール演算 AND p and q p q or ブール演算 OR p or q p q + 加法 a
2014.11 OpenOffice Math 数式コマンドおよび記述例一覧 1) 単項 二項演算子 2) 比較演算 3) 集合演算 4) 関数 5) 演算子 6) 属性 7) 括弧 8) 書式 9) その他 付録 ⅰ) ギリシャ文字一覧 ⅱ) 日本式不等号の入力について ⅲ) 文章と数式が混在する記述例 1) 単項 二項演算子 + 正記号 +1 +1 - 負記号 - 2 2 +- プラスマイナス
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2
9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
