Microsoft Word - 九大物理集中講義テキスト'13.doc

Size: px
Start display at page:

Download "Microsoft Word - 九大物理集中講義テキスト'13.doc"

Transcription

1

2 . DFT DFT Hohenberg Kohn DFT DFT 999 DFT DFT DFT 964 J.. ercus [,2] DFT ercus Hyper-netted chan HC [2,3] ercus DFT DFT 2

3 DFT. DFT + ercus 2. DFT 2. DFT DFT. 2. DFT 3. ercus

4 ercus DFT DFT 3. DFT 3.. H r,p = 2 p + v r # r j + r, 3. 2m < j m v r r : [ ] = $, dr * exp -. r + z #! * + < exp -.v r - r j * = B T T B z z = #3 exp $µ 3.3 µ 3. p = 2#$! 2 m 2 3.4! = h 2 h 3.2 = # $ log, 3.5 4

5 $ µ # T,V = r = = $ µ T,V $ r * -* r + dr. -* +. + exp $ r, /, r /, z! z! = r $ r * -* -* + dr. + r $ r. + exp $ r, /, /, -*. + /, < -*. + /, < exp $v r $ r j -. / exp $v r $ r j n r 3.6 = r # r f Drac r r f n r -. / n r = r # r [ r ] T,V #$ r # r l l # n r n r 3.7 n r = 3.6 = $ z! dr. * $, r - r * exp -/v r - r j + + # < n 3.8 n r = n 3.7 n r = r # r [ r ] T,V, = #$ r # r + r # r r # r l l = = n # r $ r + n 2 g r $ r $ n 2 * + # n r = n r = n # r $ r + n 2 h r $ r

6 n 2 g r r # 3.9 r # r $ h r r # Ornsten-ZerneOZ 3.32 = g r h r n d r d = d d z $ $ $, - # dr,* r + r # exp +/ d r!. 3. = n exp # d r n d r d = = d = z n,. z! - $ # $ dr, * r + r n d r d T,V, d = #$ d r 3. = n r # r 3.2 DFT DFT n 3.2. DFT 3.6 [ ] r µ [ ] n r F[ n] F[ n] #[ ] $ dr $ µ # [ r $ µ ] T,V r = [ ] # $ dr n r [ r # µ ] 3.3 6

7 3.6 T, V F[ n] F[ n] = #[ ] $ dr n r [ r $ µ ] $ dr $ µ # [ r $ µ ] T,V r = $ dr # n r r µ 3.6 T, V [ ] # $ = dr µ # r 3.4 [ r µ ] 3.5 T,V 3.4 F n T,V = µ # r n r 3.6 DFT F[ n] F [ n] F n = # $ dr n r T,V T,V n r [ r $ µ ] T,V n r n r = # n r T,V + µ $ r 3.7 # T,V = 3.8 n r 3.6 r n r DFT DFT 7

8 F n T,V = µ n r # r 3.9 r r # r $ n r T,V, = #$ r = n r # r n r n r n r = n r 3.2 r r = r + F [ n ] # F n n r T,V n r T,V # µ # µ 3.22 F ex [ n] µ ex F ex [ n] F[ n] # F [ n] 3.23 µ ex = µ µ r = r + F ex [ n] # µ ex n r 3.25 T, V 3.25 n 8

9 r r + #F ex [ n] + $ dr n= n #n r #F ex n #n r #n r µ ex n r n n= n = r + dr #F ex n #n r #n r, 3.26 n r $ n n= n 3.25 r = r = F ex n n= n = µ ex n r $ C r r # F ex [ n] n r n r # n= n r = n r # r n r # n = n n= n r # r $ n r = n [ r ] r # r + n 2 h r # r 3.29 = #$ #[ $ r ] = # r $ r 3.3 #n r = n= n #n r dr # $ r Ornsten-ZerneOZ = $ r r # $ r r # +$ *C *$ r r # + $ * C * n h r r # h r r # n 3.3 F r f # g r = $ dr f r # g r r F r f r g r f ˆ g ˆ F ˆ = f ˆ g ˆ 9

10 r r OZ OZ DFT OZ r = r = # r 3.3 OZ [2] = C r r # + C * n h r r # 3.32 h r r # 3.3 # r n r 3.33 DFT C r OZ 3.32 h r C r h r = C r +C * n C r +C * n C * n C r! C r 3. h r OZ h r C r C r OZ h r C r OZ C r C r OZ h r = C r h r f = exp #v r h r v r

11 C r = h r #$v r C r C r r # 3.26 r = r # $ dr C r r 3.34 n r n r = n exp # r 3.35 n r 3.34 = n exp # r 3.36 n r 3.34 F[ n] C r r # n r n r C r r # Hyper-netted chanhc ercus-yevcy OZ [2,3] C r r # C r r # DFT

12 3.3. ercus 96 ercus 958 ercus-yevcy [2,3] ercus ercus dea [] ercus DFT DFT ercus HC HC DFT ercus ercus ercus DFT ercus ercus 3.9 2

13 + = $ r r n 2 h r r # = = z z! / * +, dr -*. + l $ r # r l l =, 2 $ r r $ r # r l -*. + 2 < j exp v r r j z,, / * dr -* $ r r -* exp v r r #! r r R r r, 2 -*. + 2 < j, exp v r r j, # v r $ r n 2 h r r # + = z z -. dr $ *-, r r *! + + / exp R r r # = z R $ 2 * + 2 # r $ r < j exp v r r j 2 * + 2 R R ercus relaton 3.8 n = = z = z z $ $ $, - # dr,* r + r # exp +/v r + r j.! < j z + $ + $ + $ +, - # dr # exp +/v r + r # exp +/v r + r j. +! < j z + $ + $ + $ +, - # dr # exp +/ R r r # exp +/v r + r j. +! < j = z [ R ] h r r # = n r R n 3.4 h r r # 3.38 R r r # v r $ r r r 3

14 n r E ercus r = v r # C $ n h r = v r # h r + C r 3.42 = exp # r h r 3.43 HC [2,3] DFT +ercus HC DFT ercus DFT 3.4. Weghted-densty approxmaton WDA DFT Weghted-densty approxmaton WDA Local densty approxmaton, LDA F ex [ n] F ex [ n] = dr n r f n r 3.44 f n A ex n r Tarazona WDA = dr w r # r n r F ex [ n] = dr n r f n r 3.46 [4] 3.45 w r weght functon WDA n r w r w r [4] weght functon 3.45 WDA [5] effectve densty approxmaton EDA [6] 4

15 EDA WDA F ex [ n] = dr n r f n eff r n 3.47 n eff r n F ex [ n] n eff r n n eff r n n eff #n r n eff r n = n + dr + 2! = f n eff r n #n r n # 2 n eff r n dr dr 2 #n r #n r 2 [ n r $ n ] n [ n r $ n ] n r 2 [ $ n ] ! 3.47 F ex eff [ n] n + # dr n r f $ n eff r r n n 3.49 n r n r f n f n C r r # = 2$f # n +n $f ## n +n $f # n r n n r # n eff dr dr n n r n n eff r n n r # n r n n eff r n 2 n eff r n n r n # 3.5 f n f n F ex [ n] n eff r n n r 2 n eff r n n n r n r # n 5

16 3.49 n eff r n n r n r n eff r n n r n eff r n n n r n r # n W r 3.48, 3.49, 3.5 : F ex [ n] n r r n + # dr W r $ r n r f n eff r n, 3.5 n eff r n = n + dr W r # r [ n r # n ], 3.52 C r r # = 2$f # n W r r # + n $f ## n dr W r r r # r = n r = = n µ ex : µ ex = f n + n f n # dr W r $ r W r 3.54 atra Ghosh WDA[7] weght functon W r n eff r n n eff r n n r W r n eff r n n r n r # n W r ercus OZ W r EDA HC Y 3.34 HC Ref WDA EDA 3.24 W r 3.5. DFT

17 [ ] = F d [ n] + F ex [ n] + # dr n r [ r $ µ ] 3.55 F d [ n] F d [ n] 3.3, 3., 3. d r = µ d # ln $3 n d r d µ d = ln# 3 n = # ln $3 n d r d 3.57 T,V F d n d n d r d!f d! n d # $ = dr!f d! n d # $!n d r d =! dr n d r d! T,V =!!n d r d ln # 3 n d r d =! dr n d r d ln # 3 n d r d! # $ µ d d r!nd r d $! dr ln! 3 n d r d # $!nd r d! dr!n d r d 3.58 =! dr n d r d! dr!n d r d! Ref.2 88 F d! n d # $ 3.56 F ex [ n] F ex [ n] = F ex [ n ] + µ ex dr [ n r # n ] # 3.59 dr dr 2 C r # r 2 [ n r # n ][ n r 2 # n ] 2$ ![ ] =!! n # dr $ n r + # dr dr 2 C r r 2 $ n r 2! = F ex n! # n + n # dr dr 2 C r r 2 $ n r 2! n n $ n r $! µ ex 3.6 r = v r 3.4 ercus

18 OZ HC [8] µ ex = = v # = # n dr C r + n 3.62 dr h r [ h r # C r ] $ 2$ EDA [ ] 4. DFT 4.. R X R,# X R,# v X,X j X X R,# 3.32 Ornsten ZerneMOZ X OZ 3.42 X HC MOZ/HC [2] [2] RISM [2] RISM DFT Hohenberg Kohn 8

19 DFT DFT X R,# 3.2 : [ ] = z $ $, * # dx # exp -. X! + $ # < exp -.v X,X j 4. X X X X #[ ] = n X 4.2 [ $ µ ] T,V X X X n X n X R R R R n R R n R n R R X R n R n R n R n X n R n Appendx DFT DFT 9

20 [9]: [{ # }] = a $ $ dr $ +, $ z a a / - $ $ exp, a r! * *. s ab r a b $ $, r a<b a * $ $ < a,b a= a= exp,v ab r a b, r j * * 4.3 z a a z a = #3 a exp $µ a a µ a a a r a v ab r a b r j a j b s ab r a b r a b L ab 2 s ab r = r # L ab 4$L ab 4.4 r Drac s ab r s ab r { r } = n [ µ ] r $ T,V # { $ } r { } 4.5 { n r { } } { n r { } } X 2

21 DFT DFT n r { # } r # T,V, $ = n # r { $ } r { } = n * # r r + n 2 h # r r # r r, 4.6 #$ r r h # r $ r 4.4 #$ r = #$ r + #$ s #$ r 4.7 #$ = # # $ n d d r { # } = n a. $ dr 2 a= * + r, r 2 3 = exp,- d b 2 / b r b= s ab r a b $ 2, r 2 a<b 6 2,r 2 =r * $ b= b r 2 exp,- b d * 4.8 n 2,r 2 # =r { r 2 } 2 r 2,r 2 # =r ercus ercus 2

22 a = 3 dr h # r $ r 2 a= R n r # R # r { r } * +, - r $ r # * a 7 dr + a=, - r $ r # 3 2 s ab r a b $ r a<b s ab r a b $ r a<b { } r b $ v b r r b= $ 4 R [{ }] 6 * +,. / * +,. 4 R R [{ / }] n r { / } n 6 $ 5 { } 5 4.9, 4. { } a # dr a= R [{ # }] 4.9 r r R n r # { } { } { r } R # r r r h # r R [{ # }] ercus 4.3. DFT DFT DFT DFT 4.5 [ ] { r } # µ [ ] { n r { } } F[ { n }] a # $ [{ }] dr F { n } a [ a r µ a ] a n a r { } 4. a= 4.5 T, V F[ { n }] = $ dr a F { n # } a [ a r $ µ a ] a n a r { # } 4.2 a= 22

23 [{ }] { } F n # T,V = µ $ $ r n $ r # =,!, 4.3 DFT F[ { n }] { n r { } } DFT 4.8 n n r { # } = n r # r { # } n r # { } { } =,!, 4.4 { r } r ex #F [{ n $ }] =,!, 4.5 r = r + #n r { $ } µ ex F ex [ n] µ ex T, V F ex { n } { } { } # F[ n ] $ F [ n ] 4.6 µ ex = µ # µ 4.7 { } { } 4.5 n r n 23

24 r = r # $ b dr C b b r # r b= b [ n b r { } # n ] 4.8 $# C # r $ r F ex { n } n r { }n # r { } { } = $# r n r # n n $ { }= n { }= n $# r n # r { } n { }= n #n $ r { } # b r b b * dr = # b # b r #n r { } $ # r r b= { }= { n }= n 4.2 Ornsten-ZerneOZ = # r $ r $ # r $ r h # r $ r n + b *C bc * c# r $ r + b b= c= b= c= * C bc * n h c# r $ r 4.2 #$ r #$ r 4.2 OZ #$ r = #$ r 4.2 OZ Reference Interacton Ste Model RISM = b *C bc * c# r $ r h # r $ r + b *C bc * n h c# r $ r 4.22 b= c= b= c= DFT C # r $ r RISM DFT RISM 4.8, 4.9, 4., 4.4, 4.8 h # n d d [ r 2 { } n ] # r = dr 2 $ r r 2 r,

25 n d d r { # } = n a. $ dr 2 d # r { r } ˆ h a= * + r, r 2 = exp,- d b 2 / b r 2 b= b = v b r $ r = ˆ C ˆ ˆ + ˆ ˆ ˆ h # s ab r a b $ 2, r 2 a<b # { r } 6 2,r 2 =r * $ a= a r 2 exp,- a d b [ n b r $ n ] *, 4.24 $ b dr C b b= b= b r $ r { #, 4.25 C n ˆ h h # r f # = 4 $ rsn r f rdr ercus RISM RISM DFT HC DFT 4.24,r# =r { r } { r 2 } 2 d # r { r } 4.24 r 4.24 FFT r d r r # { } r { } 4.25 [] 25

26 + R n r { # } $ n c * + c r r c=, { #$ r } 4.9 = dr b b 2 b r $ r 2 h # r $ r b# r b 2 $ r b= #$ r #$ r r = dr b b 2 h #b r r 2 b$ r b 2 r b= # c r { r } = v c r $ r c= eff c $ v c r $ r, 4.3 c= 4.3 eff v c r # r $ n dr a 2 dr b a 2 C a r # r 2 h ab r a b 2 # r 2 # bc r b 2 # r $, 4.3 a= b= = n dr a 2 dr b a 2 C #a r $ r 2 ab r a b 2 $ r 2 C bc r b 2 $ r a= b= 4.32 ab r RISM 4.32 Donley, Curro, and McCoy DCM DCM [] 4.32 [] RISM eff v #c $ a r $ r 2 h ab r a b 2 $ r 2 $ bc r b 2 $ r $ C #c r $ r, 4.33 r $ r = dr a 2 dr b 2 #a a= b= HC 4.23, 4.24, 4.26, 4.33 Ref DFT

27 4.3 #$ r r #$ #$ r h # r [3] Chandler RISM polaron [4] RISM polaron Schwezer Curro olymer RISM RISM [5] [6] DFT L # # #3 a Q p = p + $ dr s r a a + $ # r exp #,u pp r a b $ # r a= * a= * a +<b * exp #,- s[ sp] 5. s r 4.4 u pp r s [ sp ] 27

28 a = v sp R # r sp R{ r } $ 5.2 a= 5. s sp s sp = #ln $ s [ sp ] 5.2 r { } a v sp R r 5. exp #$ s [ sp ] 5. s [ sp ] DFT s [ sp ] { r } a n s R sp = n s $ [ R # r +] 5.3 a= 3.6 { r } s [ sp ] = F ex s [ n s ] # µ ex s s # n s + n s 2 $ $ c= c dr [ R # r +] c dr dr 2 C ss R # R 2 R 2 # r + W pp r c d # r c= c= d = W pp r c d r { r } = n s 2 W pp r r # 2$ dr dr 2 r R C ss R R 2 R r #, W pp r c d r 28

29 W pp r 5.5 r 5. pp r # r $ = + * p p c d + --, r # r *, r # r c= d = p p -- c= d = #3. p a= Q p 3 a c d 6 / dr 4, r # r, r # r Q # 7 exp #8u pp r a b / # r 2 a +<b exp #89 s sp # s r a a + / # r a= RISM Q p 5. RISM = $ n s h ps r R + # # = $ p c * r r c= p * c= s * R R 3 + p a= = Q p - - a c 3., dr r r Q / 2 / - 4 exp 5u pp r a b., r / a +<b s r a a +., r a= 2 2 exp 56 s[ sp ]n s R sp 5.7 h ps r 5.7 ercus h ps r R = dr # pp r r $ r R

30 ˆ sp = h ˆ ps ˆ # $ pp 5.9 f r ˆ f = 4 # $ rsn r f rdr W pp r ˆ W pp 2 # $ pp = n s 2 ˆ ˆ h ps ˆ C ss ˆ h sp ˆ # $ pp = H pc { r } + W pp r a b $ # r H eff { r } $, 5.2 a= b= deal polymer chan W ˆ pp ˆ pp ˆ pp C ˆ ss 5. h ˆ ps ˆ pp 5.2 ˆ h ps DFT DFT h ps r DFT DFT u pp r 3

31 u pp r u pp r FFT DFT DFT h ss r h ps r ss ps = exp # ss = $ # r 5.3, a * dr - +. / r r,, c s r a a + * r - exp a 3 2 * ps r c= r = v ss r r = v ps r a= # C sp $ n p a= a= 5.4 [ h ps r + C ss $ n s h ss r ] 5.5 [ h ps r + C ps $ n s h ss r ] 5.6 # C pp $ n p ercus h ss r = n s r R p = v ps, R s = v ss n s, 5.7 h ps r = n p r R p = v ps, R s = v ss n p, , 5.6 C # r $ [ r ] C # r $ r n # r # n { = n } $ $ r n # r p, s n { = n } 5.9 3

32 = n p C # $ ˆ pp n s + n ˆ p h pp n ˆ p h ps n s h sp n p n s + n ˆ s h ss # n ˆ p pp n ˆ $ s 2 2 = ˆ C $ ˆ D = ˆ ˆ pp # + n ˆ { s h ss D } n ˆ p ˆ h sp D ˆ pp + n ˆ p h pp + n ˆ s h ss D ˆ { # ˆ } n s # n p n ˆ s h ps h ps pp + n ˆ p h pp ˆ D ˆ C h sp r = v r # t r, 5.23 = ˆ t # ˆ $ C pp C sp C ˆ ps # n p h ˆ ps C ˆ ss n ˆ $ s h ss, = t $ h ˆ ps # ˆ pp h ˆ sp n ˆ p h ps ˆ h ps h ˆ pp h ˆ ps + n ˆ s h ss D + ˆ D ˆ h ˆ ss # ˆ pp + n ˆ p n ˆ s h ss D ˆ + h ˆ ss D 5.25 n p lm t = n p h ˆ ps # $ pp # $ ˆ $ ˆ pp pp n ˆ s ˆ $ ˆ + ˆ pp 2 + n ˆ s h ss h ps n ˆ s h ss h ss ˆ $ pp + n ˆ s h ss * * t r = v s r # $ 5.26 dexp # rˆ t,

33 t ˆ s = C ˆ ss n ˆ s h ss, 5.28 t ˆ p = ˆ pp # ˆ pp ˆ h ˆ h ˆ ps + ps pp ˆ pp C ˆ ss, 5.29 ˆ pp n s 3.32 OZ HC 5.29 HC h ps r 5.7 { r } n s R sp n s R sp DFT h ps r pp r DFT h ps r 5.6 pp r 33

34 n s R sp 5.3 n s R sp n s R sp 5.3 I. 5.3, 5.27, 5.28 HC C ss r II. ˆ dc pp ˆ pp 5.3, 5.3, 5.32 h ps r h ps r = # # s r a a + * r * a $ dr a= r * r c $ exp *+ a -, $ ps r * c= a= a= r = v s r # $ # 5.3 dexp # rˆ t, 5.3 t ˆ p = ˆ pp # ˆ pp ˆ h ˆ h ˆ pp ˆ pp ps + ps ˆ pp n ˆ sc ss III. h ps r pp r ˆ W pp 2 # $ pp = n s 2 ˆ H eff { r } ˆ h ps ˆ C ss ˆ h sp ˆ # $ pp = H pc { r } + W pp r a b $ # r a= b=, 5.33 $

35 IV. pp r II II III h ps r pp r [7] [8] [9] [2] [2] DFT 5.3 $!2 2m Q # 2 + Q r * r = + * r, h QC r h QC r = exp #$ r 2 exp #$ fp r DFT fp r 5.35 QQ r d QQ r 5.33 DFT [22] [23] 6. DFT 35

36 DFT DFT. DFT DFT 3. DFT 4. Fundamental measure theory DFT 5. DFT DFT 36

37 [] G. Stell, The Equlbrum Theory of Classcal Fluds, edted by H. L. Frsch and J. L. Lebowtz Benjamn, ew Yor, 964 Vol. II-33. [2] J.. Hansen and I. R. McDonald, Theory of Smple Lquds, 2 nd ed. Academc, ew Yor 99. [3],, 2. [4] R. Evans, n Fundamentals of Inhomogeneous Fluds, edted by D. Henderson Deer, ew Yor, 992. [5] T. Sum and H. Seno, J. hys. Soc. Jpn. 77, [6] J. Chhara, rog. Theor. hys. 59, [7] C.. atra and S. K. Ghosh, J. Chem. hys. 6, [8] T. Morta, and K. Hroe, rog. of Theo. hys. 25, [9] D. Chandler and L. R. ratt, J. Chem. hys. 65, [] S. Ten-no and S. Iwata, J. Chem. hys., [] J.. Donley, J G. Curro, J. D. McCoy, J. Chem. hys,, [2] T. Sum and H. Seno, J. Chem. hys, 25, [3] D. Chandler and. G. Wolynes, J. Chem. hys. 74, [4] D. Chandler, Y. Sngh, and D. M. Rchardson, J. Chem. hys. 8, [5] K. S. Schwezer and J. G. Curro, Adv. Chem. hys. 98, 997. [6] K. S. Schwezer, K. G. Honnell, and J. G. Curro, J. Chem. hys. 96, [7] T. Sum and H. Seno, J. Chem. hys. 22, [8] T. Sum and H. Seno, J. Chem. hys. 2, [9] T. Sum and H. Seno, Chem. hys. Lett. 47, [2] T. Sum, K. Kobayash, and H. Seno, J. Chem. hys. 27, [2] T. Sum, C. Suzu, and H. Seno, J. Chem. hys. 3, [22] T. Sum and H. Seno, J. Chem. hys. 25, 94526, [23] T. Sum and H. Seno, J. Chem. hys. 28, 4472, [24]. Matubayas and M. aahara, J. Chem. hys. 3, [25]. Matubayas and M. aahara, J. Chem. hys. 7,

38 p.4 Lennard-Jones Coulomb Lennard-Jones : p exp!µ #[ ] = dr dp exp! H r, p 3 $$ h! 3 p.5-6 : p p.6 3. z $ - + # dr! * r r =. d, 6 p.6 : II 9 B 7 p.9 Ornsten-Zerne

39 8 p. f OZ HC : Hansen and McDonald; Theory of Smple Lquds, 3rd ed.; Secton 3.8 and p.2-22 ercus 4.9 p.4 Appendx DFT 39

40 Appendx: DFT [24,25] DFT 3.6 #[ ] = dr [ µ ] T,V $ # r [ r µ ] $ T,V r = dr $ r r A 3.2 r n r 3.6 r # = r $# A A2 A A2 #[ ] = dr [ µ ] T,V $ r $n r = r n $ $ A3 A3 dr# r $ n r # n# = dr [ # ] T,V $ $# d r r r *, + r $ r r $ r l -, l r $# r l l $ # $ #., $ n r n r /, $ n # n # A3 A dr# r $ A4 4

41 r r r n r n A3 A4 DFT A4 n# = # $ # [ # ] T,V, = $ n # = + r $# l # $ #n # = $ # r l + n # = = $ n # = n # = n # = h #,# A5 n = # n $ dr r A6 h,# A5 h,# A6 n = A6 z n d d = -. $ dr # d [ d ] -+ d r, $ exp, d r /! * * * = z. dr+ d r,exp, d r A7 =. dr+ d r,n d r d 4

42 A7 n d # d T,V, = $ d # = z # $ # dr $# d r = # $ #n d # d = A8 3.3 F[ n] #[ ] $ d $ µ # [ $ µ ] A9 T,V 3.6 F n T,V = µ $ # n # A 3.25 = + #F ex [ n] $ µ ex #n A # + d $ F ex n n n A2 n n = n= n $ C,# F ex [ n] n n # n= n = n # n # n = n n= n A3 A = # $ d C, [ # n = ] A4 n A3 OZ 42

43 = C,# + d h,# $ C, n = h,# A5 A = # $ - d /./ # dr r # 3 dr r # n r dr 2 r 2 dr r # # n r # r 2 dr 2 r 2 # n r # r 2 + n 2 h r # r 2 [ # n ] *, + { } *, 2 2, + 2 A6 A A F d [ n] = # d n d d µ d $ d $ # d n d d A7 3.6![ ] =!! # d $ n n! = + # d d 2 C, 2 n! =! + # d d 2 C, 2 $ n! 2! $ n! 2 n! 2 = n! = $ n! 2 n! 2 = A8 43

44 µ ex =![ = v uv ]! = # d $ n = v uv! n = + # d d 2 C, 2 n =! + # d d 2 C, 2 $ n = v uv 2! $ n 2 = v uv n 2 = n = n 2 = $ n = v 2 uv A9 C, 2 n = r v uv r dr# v uv r $ DFT DFT [24,25] X R,# r X 44

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

16 16 16 1 16 2 16 3 24 4 24 5 25 6 33 7 33 33 1 33 2 34 3 34 34 34 34 34 34 4 34-1 - 5 34 34 34 1 34 34 35 36 36 2 38 38 41 46 47 48 1 48 48 48-2 - 49 50 51 2 52 52 53 53 1 54 2 54 54 54 56 57 57 58 59

More information

ウイングルーフ車解体マニュアル

ウイングルーフ車解体マニュアル W7DA012 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 + 5 + 6 + 7 + 8 9 10 + 11 12 + 13 + 14 + 15 + + 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 + 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

main.dvi

main.dvi 4 DFT DFT Fast Fourier Transform: FFT 4.1 DFT IDFT X(k) = 1 n=0 x(n)e j2πkn (4.1) 1 x(n) = 1 X(k)e j2πkn (4.2) k=0 x(n) X(k) DFT 2 ( 1) 2 4 2 2(2 1) 2 O( 2 ) 4.2 FFT 4.2.1 radix2 FFT 1 (4.1) 86 4. X(0)

More information

本組よこ/根間:文11-11_P131-158

本組よこ/根間:文11-11_P131-158 131 132 pp 133 134 a b 135 S pp S 136 a p b p S 137 p S p p H a p b 138 p H p p 139 T T pp pp a b c S a Sp a 140 b c d Sp a b c d e Spp a 141 b c d S a b c d S pp a b 142 c d e S S S S S S S 143 S S S

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

16 5 14 12 1 15 3 6 16 5 2 3 16 3 1 11 1.1 11 1.2 12 2 21 2.1 21 2.2 26 2.3 211 2.4 226 3 31 3.1 31 3.1.1 33 3.1.2 39 3.2 311 3.3 313 3.4 315 4 41 4.1 41 4.2 42 4.3 43 4.3.1 44 4.3.2 434 4.3.3 440 4.3.4

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

Autumn 06 1 2005 100 100 1 100 1 2003 2005 10 2003 2005 2

Autumn 06 1 2005 100 100 1 100 1 2003 2005 10 2003 2005 2 2005 25-2 17 395.6 149.1 1 2004 2 2003p.13 3 Autumn 06 1 2005 100 100 1 100 1 2003 2005 10 2003 2005 2 Vol. 42 No. 2 2 100 20052005 2002 20052005 3 2005 10 1 II III IV 1 1 1 2 1 4 15-2 30 4,091 54.5 2

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ 615-851 ryoichi@chemekyoto-uacjp 66-852 onuki@scphyskyoto-uacjp 1 T g T T fragile *2 1 11) 1 9) η T g T g /T *1 τ 198 τ η = Gτ G τ T c η τ 12) strong fragile T c strong η η exp(e/k B T ) 1 2/3 E SiO 2

More information

日本経済新聞社編『経済学の巨人危機と闘う─達人が読み解く先人の知恵』

日本経済新聞社編『経済学の巨人危機と闘う─達人が読み解く先人の知恵』 2012 309pp. Yasuo Suzuki / I 2008 4 3-16 1 2 3 174 2013 winter / No.398 4 5 6 7 8 J S 9 10 11 12 13 14 15 16 17 II 9 2011 11 9 9 16 175 6-8 1 1 1 2 7 13 15 10 280 281-286 176 2013 winter / No.398 281 286-298

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + 1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr

More information

レイアウト 1

レイアウト 1 1 1 3 5 25 41 51 57 109 2 4 Q1 A. 93% 62% 41% 6 7 8 Q1-(1) Q2 A. 24% 13% 52% Q3 Q3 A. 68% 64 Q3-(2) Q3-(1) 9 10 A. Q3-(1) 11 A. Q3-(2) 12 A. 64% Q4 A. 47% 47% Q5 QQ A. Q Q A. 13 QQ A. 14 Q5-(1) A. Q6

More information

10_11p01(Ł\”ƒ)

10_11p01(Ł\”ƒ) q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

AD725: 輝度トラップ・ポートを備えた低コスト RGB-NTSC / PAL エンコーダ

AD725: 輝度トラップ・ポートを備えた低コスト RGB-NTSC / PAL エンコーダ AD725 NTSC/PAL HSYNC VSYNC 4FSC CLOCK XNOR CSYNC 4FSC CSYNC BURST NTSC/PAL 4FSC FSC 90 C FSC 0 C CSYNC FSC 90 C/270 C CLOCK AT 8FSC RED DC CLAMP Y X2 GREEN BLUE DC CLAMP DC CLAMP U V NTSC/PAL X2 X2 STND

More information

13,825,228 3,707,995 26.8 4.9 25 3 8 9 1 50,000 0.29 1.59 70,000 0.29 1.74 12,500 0.39 1.69 12,500 0.55 10,000 20,000 0.13 1.58 30,000 0.00 1.26 5,000 0.13 1.58 25,000 40,000 0.13 1.58 50,000 0.00 1.26

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Microsoft Word - ランチョンプレゼンテーション詳細.doc

Microsoft Word - ランチョンプレゼンテーション詳細.doc PS1-1-1 PS1-1-2 PS1-1-3 PS1-1-4 PS1-1-5 PS1-1-6 PS1-1-7 PS1-1-8 PS1-1-9 1 25 12:4514:18 25 12:4513:15 B PS1-1-10 PS1-2-1 PS1-2-2 PS1-2-3 PS1-2-4 PS1-2-5 PS1-2-6 25 13:1513:36 B PS1-2-7 PS1-3-1 PS1-3-2

More information