2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ
|
|
|
- きのこ かせ
- 7 years ago
- Views:
Transcription
1 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ
2 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER
3 ( ) ( ) (Dirac, t Hooft-Polyakov)
4 BKT J. M. Kosterlitz, and D.J. Thouless: Journal of Physics C 6 p (1973). 2 XY 2 U(1) XY O(2) ) 2 (Mermin-Wagner (1966)) But, 2 XY 2 ( ( ) Berezinskii: Sov. Phys. JETP, 32, p.493 (1971); Sov. Phys. JETP, 34, p.610 (1972)
5 BKT Kosterlitz (1973) Kosterlitz-Thouless (1973) Kosterlitz (1974) J. M. Kosterlitz: J. Phys. C, 7, pp (1974). Anderson-Yuval :Phys. Rev. Lett, 23, (1969) 89 ; Anderson-Yuval-Hamann :Phys. Rev. B, 1, (1970)
6 Haldane F.D.M. Haldane: Phys. Letters A, 93, p.464 (1983); Physical Review Letters, 50, p.1153 (1983) S=1/2 1 ) ( )
7 TKNN D. J. Thouless, Mahito Kohmoto, M.P. Nightingale, and M Den Nijs: Physical Review Letters, 49(6):405, (1982) ( )
8 (winding number) Figure: : -2, : -1, : 0 Figure: :1, : 2, : 3
9 ( ) 3.1 ( 1 ( x 2π C r 2 dy y ) r 2 dx 3.2 ( ) 1 2πi dz z a C (1) (2) 3.3 ( ) ( )
10 2 XY XY : H XY = J <i,j> S i S j = J <i,j> cos(θ i θ j ) (3) ( θ j (0 θ j < 2π) S j (cos θ j, sin θ j ). < i, j > )
11 2 XY 2 XY
12 2 XY (vortex) (anti-vortex) 1. 1 XY 2. 1 XY 3. ( 4.
13 2 XY BKT
14 2 XY BKT ( ) ( )
15 BKT 2 1. c 1 (T < T c ) S(r) S(r ) c 2 r r η (T = T c ) c 3 exp( r r /ξ(t )) (T > T c ) (4) T c 2. 2 XY S(r) S(r ) { c 1 r r η(t ) (T T c ) c 2 exp( r r /ξ(t )) (T > T c ) (5)
16 (3) cos(θ i θ j ) 1 (θ i θ j ) 2 /2 1 ( θ) 2 /2. H = E 0 + J d 2 r( θ(r)) 2 (6) 2 (E 0 = 2JN ) (β = 1/(k B T )) ( Z = exp( βe 0 ) D[θ] exp β J ) d 2 r( θ(r)) 2 (7) 2 Green 2 ln(r) = 2πδ(r) Γ(r r) θ(r )θ(r) = 1 2π ln r r (8)
17 2 ( ) 1. 1 W (h) = dθ exp( 1 2 Aθ2 + ihθ) = (2π/A) 1/2 exp( 1 2 A 1 h 2 ) (9) exp(ihθ) W (h) W (0) = exp( 1 2 A 1 h 2 ) (10) 2. N exp( 1 2 N i=1 N j=1 θ ia i,j θ j ) exp(i i h i θ i ) = exp 1 2 N i=1 j=1 N h i (A 1 ) i,j h j (11)
18 3 ( ) 3. exp( 1 2 θ(r)a(r, r )θ(r )d d rd d r ) W (h) exp(i h(r)θ(r)d d r) ( = exp 1 ) h(r)a 1 (r, r )h(r )d d rd d r 2 (12) A 1 A 1 (r, r )A(r, r )d d r = δ d (r r ) (13) 4. θ(r )θ(r) = δ2 W (h) δh(r 1 )δh(r 2 ) = A 1 (r 1, r 2 ) (14)
19 4 XY S(r) S(r ) = exp(i(θ(r) θ(r ))) = exp( k BT 2πJ Γ(r r )) ( ) a kb T/2πJ = r r (15)
20 < θ < θ 1
21 < θ < θ 1 But, θ = θ + 2π ( ) v v 1 2π C dl θ(r) (16) S(r)(= exp(iθ(r))) v = n (n: )
22 2πn = dl θ(r) = 2πr θ (17) θ = n/r θ(r = n/r E vor E 0 = J d 2 r( θ(r)) 2 2 C = Jn2 2 2π 0 dθ L a rdr ( ) 1 2 = Jπn 2 ln L r a (18) (L a )
23 ( +1) ( -1) ( 0 ( r 2πJ ln a) (19) (r )
24 ( ) ( ) L L 2 F = E T S Jπ ln k B T ln a a 2 (20) T KT Jπ/(2k B )
25 S = 1 ( µ θ) 2 d 2 x, (θ θ + 2π) (21) 2g θ θ sw θ vortex θ(x) = θ sw (x) + θ vortex (x) (22) dθ sw (x) = 0, (23) dθ vortex (x) = v (v : ) (24) ψ ( ) ϵ µν ν ψ = µ θ vortex (25)
26 v = dθ vortex (x) = 1 2π 2 ψd 2 x (26) 2 ψ = 2π j v j δ(x x j ) (v j : ) (27) 2 Green 1 2π ln x ψ(x) = 2π j v j 1 2π ln x x j = j v j ln x x j (28) θ vortex (x) = Im j v j ln(x x j ) (29) ( )
27 2D Coulomb gas Action S vortex = 2π 2g v i v j ln z i z j (30) i,j (2 ( )) Action sine-gordon ( < χ < ) L = 1 2g ( χ)2 2 cos( 2πχ g ) (31)
28 2 sine-gordon ( ) α α = α exp(dl) α(1 + dl) L l 0 = ln L (1/ ln L) dy 1 (l) = y 2 dl 2(l) dy 2 (l) = y 1 (l)y 2 (l) (32) dl
29 : K. Nomura: J. Phys. A, Vol. 28, pp (1995); Nomura and A. Kitazawa: J. Phys. A: Vol. 31 (1998) pp.7341
30
31 Haldane 1 H = J j S j S j+1 (33) Néel (S=1/2,3/2,...) (S=1,2,...) 0 π
32 Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 )
33 Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 ) massless(gapless)
34 Haldane : 1 2g dtdx ( 1 v ( ) φ 2 v t ( ) ) φ 2 x (φ (φ 1, φ 2, φ 3 ), φ 2 = 1) (34) Wick 1 2g dx 2 ( φ) 2 (35) 2 ) massless(gapless) But φ 2 = 1
35 Haldane : 2 ( ) φ
36 Haldane : 2 ( ) φ Figure: ( ) gap
37 Haldane : 2 ( ) φ Figure: ( ) gap 4 Yang-Mills ( ) 2
38 Haldane :, 0 π ˆφ 2i 1 2s (Ŝ2i+1 Ŝ2i) a 0, s ˆl 2i 1 2a (Ŝ2i+1 + Ŝ2i) (36) [ˆl a (x), ˆl b (y)] = iϵ abcˆlc δ(x y) [ˆl a (x), ˆφ b (y)] = iϵ abc ˆφ c δ(x y) [ ˆφ a (x), ˆφ b (y)] = iϵ abcˆlc a2 δ(x y) 0 (37) s2 δ(x y) = lim a 0 δ x,y a
39 Haldane : 2 ˆφ 2i ˆl 2i = 1 2s (Ŝ2i+1 Ŝ2i) 1 2a (Ŝ2i+1 + Ŝ2i) = 1 2sa (Ŝ2 2i+1 + Ŝ2i+1 Ŝ2i Ŝ2i+1 Ŝ2i Ŝ2 2i) = 0 ˆφ (38) ( ˆφ 2i ) 2 = 1 4s 2 [Ŝ2 2i + Ŝ2 2i+1 2Ŝ2i Ŝ2i+1] = 1 4s 2 [2Ŝ2 2i + 2Ŝ2 2i+1 4a 2 (ˆl 2i )) 2 ] = 1 + 1/s a 2ˆl/s 2 (39)
40 Haldane : 3 Ŝ 2i Ŝ2i+1 = 2a 2ˆl2 2i + s(s + 1) (40) Ŝ 2i 1 Ŝ2i = s 2 ˆφ 2i 2 ˆφ 2i as [ˆl2i 2 ˆφ 2i ˆφ 2i 2 ˆl ] 2i + a 2ˆl2i 2 ˆl 2i a 2 ( 2s 2 ( ˆφ ) 2 2s(ˆl ˆφ + ˆφ ˆl) + 2ˆl 2) s(s + 1) 2a 2 s 2 ( ˆφ ˆφ ) (41) ( ˆφ 2 = 1 + 1/s aˆl 2 /s 2 ˆφ ˆφ = ( ˆφ ˆφ) ( ˆφ ) 2 )
41 Haldane : 4 Ĥ = aj 2 dx[4ˆl 2 + 2s 2 ( ˆφ ) 2 2s(ˆl ˆφ + ˆφ ˆl)] (42) Ĥ = dxĥ, (43) [ Ĥ = v ( g ˆl θ ) ] 2 2 4π ˆφ + ( ˆφ ) 2 (44) g v = 2Jas, g = 2/s, θ = 2πs
42 Haldane : 5 Hamiltonian (44) Lagrangian L = 1 2g µ ˆφ µ ˆφ + θ 8π ϵµν ˆφ ( µ ˆφ ν ˆφ) = 1 2g ( 0φ 0 φ 1 φ 1 φ) + θ 4π φ ( 0φ 1 φ) (45) ( v = 1 [ ] Π ( ) L ( 0 φ) = 1 g 0φ + θ 4π ( 1φ φ) (46)
43 Haldane : 6 H 0 φ Π L = g ( φ Π θ ) 2 2 4π ( 1φ) + 1 2g ( 1φ) 2 (47) l φ Π Ĥ = v 2 [ ( dx g ˆl θ ) ] 2 4π ˆφ + ( ˆφ ) 2 g Q.E.D.
44 Haldane : 7 Lagrangin Wick Euclid L = 1 2g µ ˆφ µ ˆφ + iθ 8π ϵµν ˆφ ( µ ˆφ ν ˆφ) = 1 2g ( 0φ 0 φ 1 φ 1 φ) + θ 4π φ ( 0φ 1 φ) (48) ( ) ( Z = Dφ exp ) d 2 xl (49)
45 Haldane : (S 0 ) Q = 1 d 2 xϵ µν ˆφ ( µ ˆφ ν ˆφ) (50) 8π ( exp(s 0 + iθq) θ = 2πs gapped gapless
46 Haldane : 2. φ = (sin α cos β, sin α sin β, cos α) Q = 1 d 2 xϵ µν ˆφ ( µ ˆφ ν ˆφ) 8π = 1 d 2 x sin αϵ µν µ α ν β 4π = 1 D(α, β) sin α 4π D(x 0, x 1 ) dx 0dx 1 = 1 ds int (51) 4π ( D(α,β) D(x 0,x 1 ) ) : Q
47 Q µ φ + ϵ µν (φ ν φ) = 0 (52) φ 1 = 1 w ( w = φ 1 + iφ φ 3 (53) Figure:
48 2 (52) z w = 0, (z = x 0 + ix 1 ) (54) w(z) = Q j=1 z a j z b j (55)
49 Haldane : 1. S=1/2 Bethe 2. (S=3/2,5/2, ) Lieb-Schultz-Mattis I.Affleck, E.H. Lieb: Lett. Math. Phys, p. 57 (1986)
50 Haldane : Haldane AKLT(Affleck-Kennedy-Lieb-Tasaki) I. Affleck, T. Kennedy, E.H.Lieb, H.Tasaki: Physical Review Letters. 59, p.799(1987).
51 BKT 1.2 Haldane ( ) 1.3 TKNN(Thouless-Kohmoto-Nightingale-denNijs) 2.?(Umklapp )? SPTP
52 2 1., 2. ( ) 3.
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n
. X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ
1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
2017 II 1 Schwinger Yang-Mills 5. Higgs 1
2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r
2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)
φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
0. Intro ( K CohFT etc CohFT 5.IKKT 6.
E-mail: [email protected] 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x
7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT
I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {
7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3
lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d
lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0
79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t
DVIOUT-fujin
2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )
2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
0406_total.pdf
59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m
2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x
( ) ) AGD 2) 7) 1
( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
sec13.dvi
13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
量子力学A
c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................
(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: [email protected] i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................
05Mar2001_tune.dvi
2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k
構造と連続体の力学基礎
II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive
AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,
14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................
( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1
2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
