6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

Similar documents

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

S-6.indd


The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

7章 構造物の応答値の算定

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

修士論文

Steel Construction Vol. 6 No. 22(June 1999) Engineering


untitled

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

29

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

The Effects of Tax Revenue by Deductions of National Income Tax and Individual Inhabitants Tax The national income tax and individual inhabitants tax

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

28 Horizontal angle correction using straight line detection in an equirectangular image

Steel Construction Engineering Vol.3 No.12(December 1996)

鉄筋単体の座屈モデル(HP用).doc

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

Gmech08.dvi

.I.v e pmd

労働安全衛生総合研究所特別研究報告 JNIOSH-SRR-No.37(2008) 1. はじめに H 5m 1 2 図 1 2. 実験方法 列に組み上げたサンドル ( シングルタワー ) H ~4m 3000kN 2 160kN 写真 1 4m A 写

技術研究所 研究所報 No.80

電子部品はんだ接合部の熱疲労寿命解析

LD

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

untitled

mugensho.dvi

企業の信頼性を通じたブランド構築に関する考察

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

H J

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

koji07-02.dvi

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

1..FEM FEM 3. 4.

TOP URL 1

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

A Practical Calculating Method on Spring Characteristics and Stresses of Coiled Wave Springs Hideki TAKAHASHI, Naoko KAWAMURA, Takahiko KUN

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and


r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

「国債の金利推定モデルに関する研究会」報告書

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

meiji_resume_1.PDF

untitled

国土技術政策総合研究所 研究資料

0801297,繊維学会ファイバ11月号/報文-01-青山

TOP URL 1

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

untitled

tnbp59-21_Web:P2/ky132379509610002944

KENZOU

xia2.dvi

01.Œk’ì/“²fi¡*

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

Vol. 12 ( ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

災害表1.eps

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

144 福 武 松 岡 Fig. 2 Definition of stresses and strain increments, Photo 1 Fig. 3 The resultant strain shear strain T and cumulative Multi-directional s

untitled

n-jas09.dvi

薄板プレス成形の高精度変形解析手法と割れ予測

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Untitled

koji07-01.dvi

08-Note2-web

chap9.dvi

Transcription:

Damages and Earthquake Resistant Performance of Steel Frame Structures with Self Strain Stress (Faculty of Architecture and Structural Engineering) Yutaka NIHO, Masaru TERAOKA (Professor Emeritus of KNCT) Yasuhiro FUKUHARA ABSTRACT This paper describes the earthquake resistant performance of steel frame structures with self strain stresses. Both self strain stress due to differential settlement of the structures and that due to thermal strain are considered here. Firstly, this paper briefs a method for calculation on both maximum strength and horizontal stiffness of the structures. And secondly, this paper shows a load-displacement curve for each structure and investigates effects of self strain stresses on both the maximum strength and the horizontal stiffness. Finally, this paper concludes that self strain stress effects strongly both maximum strength and horizontal stiffness of the steel frame structures. keywords Steel Frame Structure, Differential Settlements, Thermal Strain, Self Strain Stress, Earthquake Resistant Performance 40 1),2) 3) 4) 2.010-3 4) 4) 721 5) 6/1000 5) 6) 10) 10) 11)

6) 5 1 2 3 4 5 1, 3) L60m h=4m 4m φ19 SS400 σ y = 23.5 10 2 kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4) 1 1 w= w0 x 2 x ( x< x0) n L n L 1 1 w= w0 x1 2 x1 ( x x0) n1 L n1 L x 1 = L x,, n 1 = 1 n (S No.5) (1.1) 2π w= w0 sin x (1.2) L w w 0 x 0 x n Fig.2 No.1No.2No.3No.4 2/15, 4/15, 6/15, 1/2 w 0 1),4)w 0 = 0, 37.5, 75.0, 112.5, 150mm w 0 /L=1/1600 1/8001/5331/400 Fig.1 Models [mm] Table.1 Sectional and Material Properties of Braces SS400 19 mm 283.5 mm 2 l 0 5657. mm E 205.8 kn/mm 2 σ y 235.210-3 kn/mm 2 N p 66.62 kn 1.1410-3 212

1) 20 o 30 o C Δt 35 o C Δt = 0, 20, 25, 30, 35 o C Q y K 0 Fig.3 Q Fig.4 (1) Fig.5 ε 0d ε 0d = ( h w) l l i+ 1 2 2 +Δ + i 0 l 0 (2.1) Δ w= w w (2.2) Fig.2 Differential Settlements Fig.3 An Example of Analytical Models Fig.4 Hysteresis Characteristics for Braces l 0 Fig.5 Calculation on Strain hll 0 w i i (1) Fig.5 θ j j θ j Δwj = (3) l Fig.6(a) Fig.6(a) l h Δw 312

d 0T = α Δt l, xj dt 1 = α Δt l (4.1), (4.2) 2 (b) = (a) (c) + (d) Fig.6 Deformation of a Steel Frame Structure with Thermal Stress Fig.7 Hysteresis Characteristics for Braces of Structures with Thermal Stress Fig.8 Combination of two Hysteresis Characteristics for Braces Fig.6(a) Fig.6(b) Fig.6(c)(d) d 0T d T d 0T d T l xj j α1.010-5 [1/ o C] Fig.6(d) d T δ T Fig.7 δ T 45 o d d T δ δ = 1 2 d (5) d 0T (5)δ 0T δ 0T ε 0T δ 0T ε 0T = (6) l 0 ε 0T ε 0d ε 0 ε = ε + ε (7) 0 0d 0T Fig.7 Fig.5 Fig.7 Fig.8 d yt q T dyt = dy dt, qt = 2Kp δt (8.1), (8.2) d y N p δ y (5) K p 45 o k Kp 1 = k (9) 2 d 0 (7)ε 0 δ 0 δ = ε l (10) 0 0 0 412

δ 0 (5) d d 0 d 0 q Fig.9 d 0 q Fig.10 Q y K 0 Q y Q d Q y Fig.9, Fig.10, Table 2 Fig.1 7 Table 1 Q ini y K ini 0 329.8[kN] 36.10[kN/mm 2 ] Q y n = q (11) j= 1 yj n q yj (a) (a) (b) d 0 d T (b) d 0 d T (c) d T < d 0 <d yt (c) d T < d 0 <d yt (d) d 0 d yt (d) d T < d 0 <d yt + d T (e) d 0 d yt + d T Fig.9 Relations on Strength and Displacement for Panels (Same Direction) Fig.10 Relations on Strength and Displacement for Panels (Opposite Direction) Table 2 Horizontal Force q and Displacement d d 0 q (Fig.9) d 0 q (Fig.10) d 0 d T (Fig.9(b)) d T <d 0 <d yt (Fig.9(c)) d 0 d yt (Fig.9(d)) d 0 d T (Fig.10 (b)) d T < d 0 < d yt (Fig.10 (c)) d yt <d 0 d y +d T (Fig.10 (d)) d 0 >d y +d T (Fig.10 (e)) q y1 2 K p d y1 K p d y1 2 K p d y1 K p d y1 q y2 q y1 + q y1 + K p (d y2 d y1 ) K p (d y2 d y1 ) q y1 + 2 K p (d y2 d y1 ) q y1 +K p d y1 q y3 q y2 + K p (d y3 d y2 ) d y1 d T d 0 d yt d 0 d 0 + d T d 0 d T 2d 0 d y d y d y2 d yt d T d 0 + d yt d 0 + d T d y3 d 0 + d yt 512

I~I 1 列 I~I 同 I~I I~ グ 1 判 対 I"<?~ ~ 1~~'1 ~ [;A ~ ~OT ~ T

~ wo~ 200~r 一二 ~ ~ ~ ~ Wo ~ wo ~ wo ~ ~

,~J~~ ~ ~~~l20 L1t ~ 35 0C L1t ~ 30 0C L1t ~ 25 0C ~ L1t ~ 35 0C L1t ~ 30 0C L1t ~ 25 0C ~ L1t ~ 35 0C L1t ~ 30 'C L1t ~ 25 'C L1t ~ 20 'C ~ L1t ~ 35 0C L1t ~ 30 'C L1t ~ 25 'C L1t ~ 20 'C ~ No. l(wo~ 150mm) No.4 (wo~ 150mm) L1t ~ 35 0C L1t ~ 30 'C L1t ~ 25 'C L1t ~ 20 'C ~ L1t ~ 35 0C L1t ~ 30 'C ~ L1t ~ 20 'C ~ ~400

6 に上記 (a)~(e) の諸量と Qy (a)~(e) の諸量 ~ ~ (e) の諸量とん 1 Kolnl

O~C トー ~ ~ ~ ~ ~ ~ 持 -- ~ O~C ~ O~C ~ ~ ~ 持 ~ 守 ~