untitled

Similar documents
-37-

Qx-Qy2 cbmo=arctanv ax=-arctanzzxylay=ax+ r am-(ax+a) RS-1ksineccosImo2S(sin-sinmo)2 RT-ks sin bsincbmosin -sin qs mo Rc-1sinsinImodam2sin-sinoUm dys=

7章 構造物の応答値の算定

JFE.dvi

untitled

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

144 福 武 松 岡 Fig. 2 Definition of stresses and strain increments, Photo 1 Fig. 3 The resultant strain shear strain T and cumulative Multi-directional s

43-60論文-濱田.indd


(a) (b) (c) (d) (b') (c') (d') Fig. 1 Undrained shear strength of soft clay ground during consolidation Fig. 2 Illustration for an one-dimensional con

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

電子部品はんだ接合部の熱疲労寿命解析

untitled

鉄筋単体の座屈モデル(HP用).doc

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

卒業論文

薄板プレス成形の高精度変形解析手法と割れ予測

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

抄録/抄録1    (1)V

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

緩衝材透水特性II 技術資料.PDF


k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

本文/目次(裏白)

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

MUFFIN3

NC L b R

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

n-jas09.dvi


X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

untitled

総研大恒星進化概要.dvi

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

(1) 1.1

[6] G.T.Walker[7] 1896 P I II I II M.Pascal[10] G.T.Walker A.P.Markeev[11] M.Pascal A.D.Blackowiak [12] H.K.Moffatt T.Tokieda[15] A.P.Markeev M.Pascal

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

土木学会構造工学論文集(2011.3)

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Field Measurement of Aeolian Sand Flux over a Sand Dune Slope Junaidi Keiko UDO, Shota MITSUSHIO, JUNAIDI, Shin-ichi AOKI, Shigeru KATO and Akira MANO

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

橡博論表紙.PDF

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

第1部 一般的コメント

第90回日本感染症学会学術講演会抄録(I)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Ł\”ƒ-2005

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

第86回日本感染症学会総会学術集会後抄録(I)

修士論文

Transactions of JSCES, Paper No Development of Shell Element with Thickness Stretch Takeki YAMAMOTO, Takahiro YAMADA, and Kazumi MATSUI

mbb mb9 xb Fig. 1 Soil-Structure Interaction System.

™¹ficŒ«“O1

untitled

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

NETES No.CG V

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

コンクリートライブラリー105

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

研究成果報告書

untitled

Key Words: wavelet transform, wavelet cross correlation function, wavelet F-K spectrum, 3D-FEM

PDF

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

( ) ,

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

Note.tex 2008/09/19( )

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

プリント

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6


I

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5


i


Wide Scanner TWAIN Source ユーザーズガイド

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Transcription:

- 37 -

- 3 -

(a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 -

1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 -

FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa 1kPa - 351 -

1 ρ (t/m 3 ) 1.3 1.. k (m/s) 1.1 1-1. 1-1. 1 - e 1.19.. V s (m/s) 7 7 13 R L1.15.3. λ.5.3.3 κ.9.. OCR 1. 1. 1.5 G /σ' m 753 53 33 M f 1.9 1.15 1. M m 1.7.99.99 B 15 15 B 1 1 3 1 γ p r..3.1 γ e r..5.3 D. 1..5 n.. 5. Dr=35% -1 Creager Dr=9% 1.5 1 - -1 Dr=35%(a) (b)(c)(d) 3% 1kPa.15..3.1. 1. 1-35 -

.3. 5 Shear strain.1. -.1 Shear stress (kpa) 3 1 -. -1 Shear stress (kpa) -.3 5 3 1-1 5 1 step 15 (a) - -.3 -. -.1..1..3 Shear strain (b) Shear stress (kpa) 5 3 1-1 - - 5 1 15 Effective mean stress (kpa) (c) (d) 3 Dr=35% step.5. Model Experiment 1.. Toyoura Dr=3%.3.5 Shear stress ratio.3. G/G....15.1 Damping factor.1 Toyoura Dr=3% DA=7.5%..5. 1 3 5 7 1 3 5 7 1.. 1-1 -5 1-1 -3 1 - Number of cycles (a) Shear strain amplitude (b) 1.5 1. Toyoura Dr=3% R=.15 1.5 1. shear stress (kpa).5. -.5 shear stress (kpa).5. -.5-1. -1. Toyoura Dr=3% R=.15-1.5-3x1-3 -1.5 1 shear strain effective mean stress (kpa) (c) (d) Dr=35%.3 Dr=35% (a)(b) - 353 -

.1 1 Shear strain.5. -.5 Shear stress (kpa) 5-5 -.1 1 3 x1 3 1 step (a) -1 -.1 -.5..5.1 Shear strain (b)..5 Shear stress (kpa) 5-5 Volumetric strain..3..1-1. 9. 9.5 1. 1.5 1 3 x1 3 Effective mean stress (kpa) (c) (d) 5 step (c)(d) 1 Tatsuoka 19 5) (c) 5 (a) (b)(c)(d) 1.35g/cm 3 1kPa.13.3.53.13.3.53.13 (d) 1.1 () 1GPa 7.5t/m 3 5.mm 1.5mm mm - 35 -

iii) FEM 1 1 1cm5cm 1 (a)(b) 5mm.5mm - 355 -

(a) (b) 1 (a) (b) 7 1 (a)(b) 7 1 1 1.mm 5Gal 5Hz.15 Newmark =.35=. Rayleigh 1.9 3%.9.5-35 -

c) 3 1 1 3 3 d) 1 i) Dr=35% 9 W-1 W3- W-1 W1- W-.5 1 1 Dr=35% 1 Dr=35% 1 ii) 1 Dr=35% Dr=35% - 357 -

W-1 W1- E.P.W.P (kpa) E.P.W.P (kpa) E.P.W.P (kpa) 1 1 Time (s) Time (s) (a) W-1 (b) W1- Time (s) W- E.P.W.P (kpa) 1 1 Time (s) (a) W- (b) W3-1 W3-9 1 1 11 (a) (b) 13 (c) 9 DY-NL(d) 13 1/ 1/ - 35 -

Y-Acceleration (m/s/s) - - Input motion Y-Acceleration (m/s/s) 1 5-5 -1 Top of pile- X-Displacmement (m) Time (s) (a). -.1 -. -.3 Top of sheet pile Time (s) (b) X-Displacmement (m) - - - -x1-3 Top of pile- Time (s) Time (s) (c) (d) 11 1 iii).5 1 13 1 No.1No.3 No. No. No.1No.3 No.No. Dr=35%.5m1.m Dr=35% 11 1 e) 3 i) 3-359 -

1. 1. No. 1. 1. No.5 1. 1. No. 1. 1. 1. Height (m) 1.. Height (m) 1.. Height (m) 1......... -.5.. -.5.. -.5. Moment (knm) Moment (knm) Moment (knm) (a) (b) (c) 1. 1. No.1 1. 1. No. 1. 1. No.3 1. 1. 1. Height (m) 1.. Height (m) 1.. Height (m) 1......... -.5.. -.5.. -.5. Moment (knm) Moment (knm) Moment (knm) (d) (e) (f) 1 1 13 1 (a) 9 DY-NL (b) 13-3 -

X-Displacmement (m). -.1 -. -.3 Top of sheet pile 3 X-Displacmement (m) - - - -x1-3 3 Top of pile- Time (s) Time (s) (a) (b) 1 3 (a) (b) 3 15 H=1.m 3 (a) (b) 3 1 H=1.m 3 1 1 5% 1 1.5-31 -

3 15 1 15 1.m 1 Dr=35% 1.m 15 3 1 Dr=35% 1.m 15 3 1 15 ii) 3.5 17 13 13 3 1 3 3 1. 1. No.1 3 1. 1. No. 3 1. 1. No.3 3 1. 1. 1. Height (m) 1.. Height (m) 1.. Height (m) 1......... -.5.. -.5.. -.5. Moment (knm) Moment (knm) Moment (knm) (a) (b) (c) 17 3-3 -

) Hashiguchi, 199: Hashiguchi and Chen, 199 7),) Masing Sekiguchi and Ohta (1977) 9) Hashiguchi and Tsutsumi, 1 1) 1)1 1 i) 3 Layers 1-3 Layer Dr=5%9 Layers 1 & 3 Layer 1 (dry) P-1 P- Layer (saturated) Total mesh number: 1 Mesh size: 11m P-3 Sine wave: 5Hz, 5Gal Layer 3 (saturated) Input (sine wave) 1 Shear stress ratio.5..3..1 Toyoura Dr = 5 % DA =7.5 % Model Experiment 1 1 1 Number of cycle 19-33 -

3 1. ν ( G). ρ 3. γ. p i 5. φ ( m). u 7. c. µ 9. φ ( m ) 1. b r 11. φ ( m ) 1. σ d b d b 13. 1. s F 15. β ν =.33 ρ =.5 γ =.1 Layer Layers 1 & 3 F = f u = φ = c = 1 φ d = 33 µ =. ν =.33 ρ =.5 γ =.1 F = 1 f u = φ = 1 c = φ d = µ = f = p (1+ )φ - 3 -

Shear stress (kpa) 15 1 5-5 -1-15 - P-1 P- P-3 5 1 15 Effective mean stress (kpa) Shear stress (kpa) 15 1 5-5 -1-15 - P-1 P- P-3 -. -. -.... Shear strain 1-35 -

1) 1/1/ ) (e) 1).3.. ) Oka, F., Yashima, A., Shibata, T., Kato, M. and Uzuoka, R.: FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model, Applied Scientific Research, Vol.5, pp.9-5, 199. 3) Oka, F., Yashima, A., Tateishi, A., Taguchi, Y. and Yamashita, S.: A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus, Geotechnique, pp.1-, 1999. ) Zhang, F., Kimura, M., Nakai, T. and Hoshikawa, T.: Mechanical behavior of pile foundations subjected to cyclic lateral loading up to the ultimate state, Soils and Foundations, Vol., No.5, pp.1-17,. 5) Tatsuoka, F., Muramatsu, M. and Sasaki, T.: Cyclic undrained stress-strain - 3 -

behavior of dense sands by tosional simple shear test, Soils and Foundations, Vol., No., pp.55-7, 19. ) Fukushima, S. and Tatsuoka, F.: Strength and deformation characteristics of saturated sand at extremely low pressures, Soils and Foundations, Vol., No., pp.3-, 19. 7) Hashiguchi, K.: Subloading surface model in unconventional plasticity, Int. J. Solids Struct., 5(), 917-95, 199. ) Hashiguchi, K. and Chen, Z. P.: Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening, Int. J. Numer. Anal. Meth. Geomech.,, 199-7, 199. 9) Sekiguchi, O. and Ohta, H.: Induced anisotropy and time dependency in clays, Constitutive Equations of Soils (Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Session 9), Tokyo, JSSMFE, pp. 9-3, 1977. 1) Hashiguchi, K. and Tsutsumi, S.: Elastoplastic constitutive equation with tangential stress rate effect. Int. J. Plasticity, Vol. 17(1), pp. 117-15, 1. (f) Prediction of Earth Pressures on a Pile Group Due to Liquefaction-induced Ground Flow Sixth World Congress on Computational Mechanics (WCCM VI) in conjunction with the Second Asian-Pacific Congress on Computational Mechanics (APCOM') (g) ) 3) - 37 -

(3) (a) - (b) 1 1 E - 3 -