( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

function2.pdf

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Korteweg-de Vries

Gmech08.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

pdf

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

08-Note2-web

A


A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %



1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

i

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

知能科学:ニューラルネットワーク

I 1

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


( )

DVIOUT


熊本県数学問題正解

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

29

untitled

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

i

85 4

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

( ) ( )

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1


Transcription:

4 2010.6 1 :, HP.. HP 4 (, PGM/PPM )., python,,, 2, kadai4,.,,, ( )., ( ) N, exn.py ( 3 ex3.py ). N 3.., ( )., ( ) N, (exn.txt).. 1

( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos(). -3.14159265359-1.0-3.13530946828-0.999980260856-3.12902628298-0.999921044204-3.12274309767-0.999822352381 : for ( 4 10 ) print ( 4 8 ) cos ( 4 3 )., (>). python ex1.py > cos.dat,, gnuplot. gnuplot 2

gnuplot, (gnuplot>). G N U P L O T Version 4.2 patchlevel 4 Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot> Terminal type set to wxt gnuplot> (gnuplot> ), plot cos.dat. plot cos.dat with lines,. gnuplot gnuplot>, Ctrl-d (Ctrl d)., gnuplot. gnuplot, plot. gnuplot, gnuplot., ( : show.gpl) plot cos.dat pause -1, gnuplot show.gpl.. Excel., (,),.csv (print x,,, cos(x)).,,, gnuplot ( )., Excel. 3

4 n, (): u 0 = 1 u 1 = 1 u n = u n 1 + u n 2 (n 2), u n fib. u 10.. def fib(n): return print fib(10) : for ( 4 7 ),,., Excel.. i u i 2 u i 1 u i 2 1 1 3. n 5, n, u 2, u 3,, u n. i, u i. 4

:, for print, print fib print. def print fib(n): print fib(10). 2 2 3 3 4 5 5 8 6 13 7 21 8 34 9 55 10 89 6... a, b, 2 u 0, u 1 n 2, n (u n ),., a = b = 1, u 0 = u 1 = 1. u n + au n 1 + bu n 2 = 0 (n 2). def print recurrence(a, b, u0, u1, n): print recurrence( 1, 1, 1, 1, 10) 5

7, a = 1, b = 1, 3. a = 0, b = 1, 4, a = 1, b = 1, 6.., 5 a, b?, (gnuplot ). 13?, x 2 + ax + b = 0 2 α, β. α = β, α β, u n = Aα n + Bβ n (A, B u 0, u 1 ). 8 (, ). a, b, u(0), u (0), t, u(t). u (t) + au (t) + bu(t) = 0. def solve de(a, b, u0, u 0, t): solve de(0, 1, 1.0, 1.0, 10.0) t, 0 t, ( t, u(t)), gnuplot. a, b (, a, b ),, ( ). 6

: Excel. t u(t), u (t), u(t + t) t u (t), u (t), u (t + t) t u (t), u (t) u (t), t u(t), u (t), u(t + t), u (t + t). u(0), u (0) u( ). Excel,,. (1), ( ).,, u (t) + u (t) 2 + log u(t) = 0 u (t) + sin u(t) + log t = 0,., u t, u(x, y, t) ( ),.,,,,,. (2) t, u(t) t, LCR. a = 0, b > 0 (ma = kx). a > 0, a (ma = av kx) ( ). b > 0, b,,.. a > 0,,.., : x 2 + ax + b = 0 2 α, β. α = β, α β, u(t) = Ae αt + Be βt (A, B u(0), u (0) ). α, β (, e αt ).,,,, α, β. 7

250 "b.dat" 200 150 100 50 0-50 -100-150 -200 9-250 0 100 200 300 400 500 600 700 800 900 1000,.,,,. a = 0, b > 0,.,., b. t,,.,.,,,.,, 0,,.,,,,., a = 0, b > 0, ( ). 8

,,,,, ( ). :,.,, ( ), 10 PPM 2 f(x, y),. 1. HP 4 (, PGM/PPM ). 2., display. display 3. mi less.,. 4.,, PGM (Portable Grey Map), PPM (Portable Pixel Map).,. 5. PGM ( ) (mi ). P2 w h d G 0,0 G 1,0 G 2,0 G w 1,0 G 0,1 G 1,1 G 2,1 G w 1,1 G 1,h 1 G 2,h 1 G w 1,h 1 9

w, h,,. d,, 255. G i,j (i, j), 0 d. 0, 255,. (i, j), (0,0), i, j.,,. 6. PPM ( ). P3 w h d R 0,0 G 0,0 B 0,0 R 1,0 G 1,0 B 1,0 R 2,0 G 2,0 B 2,0 R w 1,0 G w 1,0 B w 1,0 R 0,1 G 0,1 B 0,1 R 1,1 G 1,1 B 1,1 R 2,1 G 2,1 B 2,1 R w 1,1 G w 1,1 B w 1,1 R 1,h 1 G 1,h 1 B 1,h 1 R 2,h 1 G 2,h 1 B 2,h 1 R w 1,h 1 G w 1,h 1 B w 1,h 1 1 P3, RGB 3. (mi ), 10 10, PPM, display (, ). : (100 ).,.,.., PPM,., 512 256 ( 512, 256) PPM., python,. display.. for for. 10

def print blue ppm(): print P3 print 512,256 print 255 for for print print blue ppm() 11 2 PPM, 2. xy [ 2.0, 2.0] [ 1.0, 1.0], f(x, y) = x2 4 + y2 PPM. PPM ( ex11.ppm) 512 256. f(x, y) 0 (0 0 0), 2.0 (255 0 0),. :.. x ( ), int(x).,. 12 (),.., n c. z 0 = c z n = z 2 n 1 + c (n 1) z n,. c. N, z 0, z 1,, z N 1 ( ) 2 11

( ). a, b, d, M, [a, a + d] [b, b + d] ((a, b) d ) ( PPM )., M, (). (). a = b = 2.0, d = 4.0,.. 2,., z 0, z 1,, z N 1 ( ) 2, n., PPM ( ex12-1.ppm, ex12-2.ppm, ) 13 1. 1,,., 12

,... random() ([0, 1] ). :. A, B., A (y), [ 1, 1]., AB, (θ), [0, 2π]. y θ.,,.,,,.,,,., y θ., Ω = [ 1, 1] [0, 2π]. Ω, (β, θ) A., A Ω., Ω, A., 2, 3 4., Ω, f A (x) = { 1 (x A) 0 (x A), Ω f A(x)dx Ω dx., x Ω, f A (x) ( ). f A (x),.. : Ω, g(x) (x Ω) : x Ω, g(x) Ω g(x)dx Ω dx 13

: x Ω (N ) (x 1,, x N ),. 1 N N g(x i ) i=1,.,,. 14 1 π, 4 3 π. N S N, x 2 1 + + x 2 N 1 N,, S N 1 dx 1 dx 2 dx N. 4. S, N. 15 1. 2, kadai4.zip. 2., MailSuite,., ------------------------------------------------------ : rktau0 : 4 gxxxxxx gxxxxxx 4 CFIVE....... ------------------------------------------------------. kadai4.zip. 14