{x 1 -x 4, x 2 -x 5, x 3 -x 6 }={X, Y, Z} {X, Y, Z} EEC EIC Freeman (4) ANN Artificial Neural Network ANN Freeman mesoscopicscale 2.2 {X, Y, Z} X a (t

Similar documents
Table 1 Table 2

JFE.dvi

Consideration of Cycle in Efficiency of Minority Game T. Harada and T. Murata (Kansai University) Abstract In this study, we observe cycle in efficien

Fig. 1 Relative delay coding.

DEIM Forum 2009 B4-6, Str

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE

CMCの社会的ネットワークを介した社会的スキルと孤独感との関連性

( ) fnirs ( ) An analysis of the brain activity during playing video games: comparing master with not master Shingo Hattahara, 1 Nobuto Fuji

Fig. 1 Table l l l l l l l l l l l l l l l l l l l l l l l l l l

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

The Plasma Boundary of Magnetic Fusion Devices

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

施 ほか/3-18

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

teionkogaku43_527

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

* A Consideration of Motor Skill Learning Brain Pathway Shift and Memory Consolidation Keiko HASHIMOTO * In motor skill learning, it is known

johnny-paper2nd.dvi

DEIM Forum 2009 E

関西福祉大学紀要 12号(P)/1.太田

Perrett et al.,,,, Fig.,, E I, 76

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

main.dvi

06’ÓŠ¹/ŒØŒì

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

013858,繊維学会誌ファイバー1月/報文-02-古金谷

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

NINJAL Research Papers No.8

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

News_Letter_No35(Ver.2).p65

T05_Nd-Fe-B磁石.indd

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

it-ken_open.key

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

平成○○年度知能システム科学専攻修士論文

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

i

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

2016, Japanese Journal of Family Sociology, 28(1): 11-25


2 ( ) i

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

原稿.indd

27 1 NP NP-completeness of Picross 3D without segment-information and that with height of one

[18] [22] YouTube 2 Wittner taktell piccolino amazon.co.jp

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

地球観測衛星データの保存・配布システム

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

58 10

HP

知能と情報, Vol.30, No.5, pp

fiš„v8.dvi

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

untitled

XFEL/SPring-8

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

0A_SeibutsuJyoho-RF.ppt

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

lecture_rev3

untitled

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

Bull. of Nippon Sport Sci. Univ. 47 (2) ) 1) 1) 1) 2) 1) 1) 2) The study of university and technical school freshmen in judo

P2P P2P peer peer P2P peer P2P peer P2P i

2017 (413812)

Mining Social Network of Conference Participants from the Web

@08470030ヨコ/篠塚・窪田 221号

Vol. 5, 29 39, 2016 Good/Virtue actions for competitive sports athlete Actions and Choices that receive praise Yo Sato Abstract: This paper focuses on

ODA NGO NGO JICA JICA NGO JICA JBIC SCP


2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

kiyo5_1-masuzawa.indd

202

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

161 J 1 J 1997 FC 1998 J J J J J2 J1 J2 J1 J2 J1 J J1 J1 J J 2011 FIFA 2012 J 40 56

本文6(599) (Page 601)

IPSJ SIG Technical Report Vol.2012-MPS-88 No /5/17 1,a) 1 Network Immunization via Community Structure based Node Representation Tetsuya Yoshida

Transcription:

( ) No. 4-69 71 5 (5-5) *1 A Coupled Nonlinear Oscillator Model for Emergent Systems (2nd Report, Spatiotemporal Coupled Lorenz Model-based Subsystem) Tetsuji EMURA *2 *2 College of Human Sciences, Kinjo Gakuin University 2-1723 Omori, Moriyama-ku, Nagoya-shi, Aichi, 463-8521 Japan The author has proposed a new Lorenz model with an excitatory-excitatory connection matrix (EEC model) or an excitatory-inhibitory connection matrix (EIC model) which consists of the three temporal coupling coefficients and three spatial coupling coefficients in a previous paper. In this paper, the author introduces an abstract coincidence detector model (ACD model) to evaluate the spartial synchronization of neurons, and a Hopfield model to decide the three spatial coupling coefficients which govern emergent ability. The paper shows that boundary regions of each phase of the self-organized phase transition phenomena which appear in the proposed model have information processing ability, and claims that a proposed model is useful to an architecture for the emergent subsystems for emergent systems. Key Words: Systems Engineering, Design Engineering, Design, Emergence, Self-Organization, Coupled Oscillator, On-Off Intermittency, Synchronization, Lorenz, Hopfield, Chaos, Coincidence Detector, Neuron, Brain 1 Clark (1) Newell-Simon PSSH Mindware McCulloch-Pitts Biological Architecture van Gelder (2) Dynamical Systems Hard Biological Dynamical Emergent c d 4 9 28. *1, 463-8521 2-1723. E-mail: emura@kinjo-u.ac.jp c d EEC EIC c d (3) 2.1 336 2 (1) x 1,4 σ(x 2,5 x 1,4 ) x 4 x 1 x 2,5 = x 1,4 (r x 3,6 ) x 2,5 ± D * x 5 x 2 L(1) x 3,6 x 1,4 x 2,5 b x 3,6 x 6 x 3 c 1 d 2 d 3 D * = D = d 1 c 2 d 3 : Excitatory - Excitatory Connection d 1 d 2 c 3 c 1 d 2 1 d 3 D * = D = 1 d 1 c 2 d 3 : Excitatory - Inhibitory Connection d 1 1 d 2 c 3

{x 1 -x 4, x 2 -x 5, x 3 -x 6 }={X, Y, Z} {X, Y, Z} EEC EIC Freeman (4) ANN Artificial Neural Network ANN Freeman mesoscopicscale 2.2 {X, Y, Z} X a (t) X b (t) (2) t t n=, 1, 2,, ( n) = x i+3 x i K(2) Δ i i=1, 2, 3 u i u i ( n) =1 if Δ i ( n) ε ( n) = if Δ i ( n) > ε L(3) (5) 1 u i ( n) = 1+ exp[ z i z ] L(4) z i = ( ε Δ i ( n) ) 1 (6) {u 1, u 2, u 3 }={X, Y, Z} {, 1} [, 1] t (4) z z 1 2.3 Table 1: Specifications EEC model EIC model r 28 28 b 8/3 8/3 c.2.4 d variable variable t.1.1.5.5 {X, Y, Z} Fujii (7) ACD Abstract Coincidence Detector Gray (8) Fujii ACD 1. 2. 3. 4. 5. 1 u i (n) w i D(n) Fig. 1: Schematic illustration of the ACD model 337

5. ACD D(n) (5) ( ) =1 if N = w i u i ( n) D n D n k = k i=1 or D = w i u i ( n) =1 i k ( ) < k i=1 or D = w i u i ( n) 1 ( ) = if N = w i u i n i L(5) n ACD ACD w io =1 (i=1,, k) k=3 N 2 {X, Y, Z} X X X {X, Y, Z} EEC EIC Fig. 3: A typical sample of the amplitude (left) and power spectrum (right) of X(t) of the EEC model (top) and EIC model (bottom), t=~[sec], d=.3. Fig. 2: A typical sample of the amplitude of X(t) and histogram of output of ACD of the EIC model, d=.3. 2.4 EEC EIC 3 {X, Y, Z} EEC EIC X {X, Y, Z} (2) (3) (5) ACD n {X, Y, Z} c d 4 4 8 9 c EEC EIC 9 4 {X, Y, Z} d d {X, Y, Z} EIC d 338

Total [%] Total [%] Fig. 4: Excitatory Excitatory Connection Model.1.2.3.4.5.6 Excitatory Inhibitory Connection Model d.1.2.3.4.5.6 d Histogram of total firing ratio and synchronized ratio of {X,Y,Z} versus d of the EEC model, c=.2 (top) and EIC model, c=.4 (bottom), t=~[sec]. 3 3.2 4 {X, Y, Z} (2) (3) (5) ACD n {X, Y, Z} 5 EIC 6 EEC w ij th i = th i =-.5 th i i s i s i = Total [%] Excitatory Connection Weight on the EIC Model.1.15.2.25 +Wij 3.1 Hopfield Hopfield (9) Ising Attractor Neural Network Model (6) ( ) = sign w ij s j ( n) s i n +1 j L(6) Hopfield d i (i=1, 2, 3) (7) dynamic d i ( n) = w ij u j n j w ij = w ji w ii = ( ) + s i th i L(7) Hopfield i j j i u j (n) n j {,1} s i i th i i Total [%] Fig. 5: Inhibitory Connection Weight on the EIC Model.1.15.2.25 -Wij Histogram of total firing ratio and synchronized ratio of {X,Y,Z} versus w ij of the EIC model at excitatory connection weight (top, s i =, th i =) and inhibitory connection weight (bottom, s i =, th i =-.5), t=~[sec]. EIC 5 d i {X, Y, Z} d i EEC 6 4 339

Freeman () Strange Attractor Total [%] Excitatory Connection Weight on the EEC Model.1.15.2.25 +Wij Hopfield d i Hopfield Hopfield Total [%] Inhibitory Connection Weight on the EEC Model.1.15.2.25 -Wij Fig. 6: Histogram of total firing ratio and synchronized ratio of {X,Y,Z} versus w ij of the EEC model at excitatory connection weight (top, s i =, th i =) and inhibitory connection weight (bottom, s i =, th i =-.5), t=~[sec]. 3.3 Hopfield Hopfield (8) n E(n) ( ) = 1 2 E n w ij u i ( n)u j ( n) ( s i th i ) u i n i j i ( ) L(8) 7 EIC X u 1 ACD D(n) E(n) u 1 ACD Y Z ACD Fig. 7: Spike train of u 1 (top), output of ACD (middle) and energy of network (bottom) versus t of the EIC model, w ij =-.15, s i =, th i =-.5, t=~[sec]. ACD 4 Edge of Chaos th i 3

8 th i =-1/3 d 1 (n) E(n) ACD D(n) Hopfield 8 ACD 1 7 8 Hopfield Hopfield 4 Abstract Coincidence Detector Hopfield Edge of Chaos (1) Clark, A., Mindware, Oxford University Press (1991) (2) van Gelder, T. J., The Dynamical Hypothesis in Cognitive Science., Behavioral and Brain Sciences, 21 (1998) 1. (3). (4) Freeman, W. J., How Brains Make Up Their Mind, Columbia University Press () (5) Inoue, M. and Nagayoshi, A., A Chaos Neuro-computer, Physics Letters, A158 (1991) 373. (6) Inoue, M. and Nagayoshi, A., Solving an Optimization Problem with a Chaos Neural Network, Progress of Theoretical Physics, 88 (1992) 769. (7) Fujii, H. et al., Dynamical Cell Assembly Hypothesis, Neural Networks, 9 (1996) 13. (8) Gray, C. M. et al., W., Oscillatory Responses in Cat Visual Cortex Exhibit Inter-columnar Synchronization which Reflects Global Stimulus Properties, Nature, 338 (1989) 334. (9) Hopfield, J. J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proceedings of the Fig. 8: Spatial coupling coefficient d 1 (top), energy of network (middle), and output of ACD (bottom) versus t of the EIC model at unbalanced synapse weight, w 12 =1/3, w 13 =-1/3, w 23 =-1/3, th i =-1/3, s i =, t=3~[sec]. National Academy of Science of the USA, 79 (1982) 2554. () Tateno, K., Hayashi, H. and Ishizuka, S., Complexity of Spatiotemporal Activity of a Neural Network Model which Depends on the Degree of Synchronization, Neural Networks, 11 (1998) 985. 341