流体としてのブラックホール : 重力物理と流体力学の接点

Similar documents
流体とブラックホールの間に見られる類似性・双対性

24.15章.微分方程式

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled



家族を強める

A A. ω ν = ω/π E = hω. E

本文/020:デジタルデータ P78‐97

プログラム

基礎数学I

0302TH0130.indd

合併後の交付税について

第86回日本感染症学会総会学術集会後抄録(II)



Part. 4. () 4.. () Part ,

H /大学教育開発センターニュース(23).indd

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP


橡scb79h16y08.PDF

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

Q E Q T a k Q Q Q T Q =

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

30

hirameki_09.dvi

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)


ω ω

横組/中高 技術科問題           ●

2日目 10月31日(金曜日)プログラム

本文/本文


kita University

確率論と統計学の資料

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

ii th-note

本文/報告2

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

INDEX

Microsoft Word - Wordで楽に数式を作る.docx


RX501NC_LTE Mobile Router取説.indb

13

平成28年度第1回高等学校卒業程度認定試験問題(科学と人間生活)

DSP工法.pdf


広報うちなだ2002年6月号

1 2

01-02.{.....o.E.N..


i I

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

受賞講演要旨2012cs3

8 8 0

untitled

aisatu.pdf

Sigma

Sigma

2002.N.x.h.L g9/20

平成18年度弁理士試験本試験問題とその傾向

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

ボールねじ

FR

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

Fig V 2.3.3

GM-01A_usermanual


Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書

.A. D.S

日本糖尿病学会誌第58巻第1号

第 1 章 書 類 の 作 成 倍 角 文 字 SGML 系 書 類 のみ 使 用 できます 文 字 修 飾 改 行 XML 系 書 類 では 文 字 修 飾 ( 半 角 / 下 線 / 上 付 / 下 付 )と 改 行 が 使 用 できます SGML 系 書 類 では 文 字 修 飾 ( 半 角

0-Ł\04†E01.pdf

2 p T, Q

Gmech08.dvi


Miyagi University of Education


ドキュメント1

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( )+V (r 1, r 2 ) ϕ(r 1, r 2

ロジカルシンキングとロジカルライティング

MRI X......

.g.i.~.^.A

ヴィエトナム高原におけるマッシュルーム栽培の基本

2.

【解説】ヒロシマ原爆展-ヒロシマ・ナガサキ被爆60周年-

『戦時経済体制の構想と展開』

fpu49.pdf

H1

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

ありがとうございました

Transcription:

1890 2014 136-148 136 : Umpei Miyamoto Research and Education Center for Comprehensive Science, Akita Prefectural University E mail: umpei@akita-pu.ac.jp 1970 ( ) 1 $(E=mc^{2})$, ( ) ( etc) ( )

137 ( (duality) ) $\searrow$ $l\backslash$, 2 2.1 $(r, \theta, \phi)$ 3 4 $(x^{a})_{a=0,1,2,3}:=$ $t$ $(ct, r, \theta, \phi)$ $c$ $x^{a}$ $x^{a}+dx^{a}$ $ds^{2}= \sum_{a,b=0}^{3}g_{ab}dx^{a}dx^{b}$ (1) $\Sigma$ $g_{ab}$ ( ). $G_{ab}+ \Lambda g_{ab}=\frac{8\pi G}{c^{4}}T_{ab}$ (2) $G_{ab}$ $A$ 2 $G$ $T_{ab}$ (2) (2) ( ) 2.2 (2) $T_{ab}=\Lambda=0$ ( ) $ds^{2}=-f(r)c^{2}dt^{2}+ \frac{dr^{2}}{f(r)}+r^{2}d\omega_{2}^{2}, f(r)=1-\frac{r_{0}}{r}$ (3)

$\kappa$ 138 $d\omega_{2}^{2}:=d\theta^{2}+\sin^{2}\theta d\phi^{2}$ $M$ 2 $r_{0}= \frac{2gm}{c^{2}}$ (4) $r_{0}=0$ $f(r)\equiv 1$ 3 $(r, \theta, \phi)$ $r0>0$ $r<r_{0}$ $r=0$ ( $)$. $r=r_{0}$ 2.3 $M$ $A=4\pi r_{0}^{2}$ $A$ $A+\delta A(\delta A\geq 0)$ $\delta(mc^{2})$ $\delta(mc^{2})=\frac{c^{2}}{8\pi G}\kappa\delta A$ (5) $Mc^{2}$ $U$ $T,$ $A$ $S$ (5) $\delta U=T\delta S$ ( ) $T= \frac{\hslash}{2\pi ck_{b}}\kappa$ (6) ( $k_{b}$ ) ) (5) ( $S= \frac{c^{3}k_{b}}{4g\hslash}a=\frac{k_{b}}{4\ell_{p}^{2}}a$ (7) $\ell_{p}:=\sqrt{g\hslash}/c^{3}$ $(\sim 10^{-33} cm)$ (7) 4 $(c, G, \hslash, k_{b})$ ( $e^{i\pi}=-1$ )

139 1: $[(a)arrow(b)arrow(c)arrow(d)$ $].$ $z=$ $(n+1)$ $S^{n+1}$ $z$ $(r=0)$ 3 3.1 (3) $f(r) arrow 1-(\frac{r_{0}}{r})^{n} d\omega_{2}^{2}arrow d\omega_{n+1}^{2}, n=1,2,3, \ldots$ (8) $(n+1)$ $S^{n+1}$ 5 $+dz^{2}$ $z$ $(n+4)$ $(n+1)$ $S^{n+1}$ $z$ ( 1 $[a]$ ). 3.2 (2) (Gregory-Laflamme) [1] $\delta g_{ab}\propto\exp(-i\omega t+ikz)$ (9) $\omega^{2}<0$ ( $\omega$ ) $k(0<k<k$ $\sim\sqrt{n}/r_{0})$ ( 2). $\lambda:=2\pi/k$ $L$ $L>\lambda_{c}:=2\pi/k_{c}\sim ro/\sqrt{n}$

140 $L$ $(r_{0}\gg$ $L)$. $r_{0}\lessapprox L$ ( ) 1. $n\geq n_{c}:=10$ [3, 4], [5]. $[$ (5 ) $1(b)]$, $[$ $1(c)]$. $[$ $1(d)]$, $r(t)\propto(t_{0}-t)$ 2. ( to ) ( ) ( ) ( ) 4 $l/$ [6, 7]. $l/$ ( 1 ). 1 [2] 2 ( )

141 $2$ : $\delta g_{ab}\propto\exp(-i\omega t+ikz)$ $\omega(k)$. $0<k<k$ $\sim\sqrt{n}/r_{0}$ $(-i\omega>0)$ 4.1 [5] 2.3 [1]. [3, 4]. 4.2 [6].

142 $3:(n+2)$ (surface diffusion equation) [8] [9]. $J$ $J=-A\nabla_{s}\kappa$ (10) $A$ $\kappa$ $\rho u+\nabla_{s}\cdot J=0$ (11) $u$ $\rho$ $u=\rho^{-1}a\nabla_{s}^{2}\kappa=:b\delta_{s}\kappa$ (12) $D:=(n+2)(n\geq 1)$ $(n+1)$ z constant $=$ $n$ $r=r(t, z)$ $S^{n}$ $t$ $z$ ( 3 ). $\kappa=\frac{n}{r\sqrt{1+r^{\prime 2}}}-\frac{r"}{(1+r^{\prime 2})^{3/2}}$ $u= \frac{\partial_{t}r}{\sqrt{1+r^{;2}}}, \Delta_{s}=\frac{1}{r^{n\sqrt{1+r^{J2}}}}\partial_{z}(\frac{r^{n}}{\sqrt{1+r^{\prime 2}}}\partial_{z})$ (13) $\partial_{t}r(t, z)=\frac{b}{r^{n}}\partial_{z}(\frac{r^{n}}{\sqrt{1+r^{\prime2}}}\partial_{z}[\frac{n}{r\sqrt{1+r^{;2}}}-\frac{r"}{(1+r^{2})^{3/2}}])$ (14) 4 4 12 [9]. $(D\simeq 10)$

$\rho$, $\zeta$ 143 $t/t_{dyn}=0.0$ $t/t_{dyn}=0.85$ $t/t_{dyn}=0.91$ $t/t_{dyn}=0.92$ $t/t_{dyn}=0.0$ $t/t_{dyn}=0.42$ $t/t_{dyn}=0.67$ $t/t_{dyn}=1.18$ 4: 4 ( ) 12 ( ) 4 12 5 ( ) 5.1 $P$, $v^{i}(i=1,2, \ldots,p)$ $\partial_{t}\rho+\partial_{i}(\rho v^{i})=0, \partial_{t}(\rho v^{i})+\partial_{j}\pi^{ij}=0$ (15) $\Pi_{ij}=\Pi_{ij}^{(0)}+\Pi_{ij}^{(1)}$ ( ) $\Pi_{ij}^{(0)}=\rho v_{i}v_{j}+p\delta_{ij}$ $\Pi_{ij}^{(1)}=-\eta(\partial_{i}v_{j}+\partial_{j}v_{i}-\frac{2}{p}\delta_{ij}\partial_{k}v^{k})-\zeta\delta_{ij}\partial_{k}v^{k}$ (16) $\eta$ $\eta$ $\Pi_{ij}^{(1)}$ $\Pi_{ij}^{(0)}$ (15) ( ) $T_{\mu\nu}$ $\partial_{\mu}t^{\mu\nu}=0, x^{\mu}:=(ct, z^{i})$ (17) (15) ( $P$ ) $\rho$ $\eta,$ $\Pi_{ij}^{(0)}+\Pi_{ij}^{(1)}$

144 $\Pi_{ij}^{(m)}$ $m$ $\Pi_{ij}^{(m\geq 2)}$ $\partial_{\mu}t^{\mu\nu}=0, T^{\mu\nu}=\sum_{m=0}^{\infty}\epsilon^{m}T_{(m)}^{\mu\nu}$ (18) $\epsilon$ $T_{(0)}^{\mu\nu}$ $T_{(m\geq 1)}^{\mu\nu}$ $\epsilon(<1)$ $O(\epsilon)$ $T_{(0)}^{\mu\nu}=\rho u^{\mu}u^{\nu}+pp^{\mu\nu}$ (19) $T_{(1)}^{\mu\nu}=-2c\eta\sigma^{\mu\nu}-c\zeta P^{\mu\nu}\partial_{\alpha}u^{\alpha}$ $T_{(0)}^{\mu\nu}$ $u^{\mu}u^{\nu}+\eta^{\mu\nu}$ $T_{(1)}^{\mu\nu}$ $P^{\mu\nu}:=$ $\eta^{\mu\nu}=diag(-1,1, \ldots, 1)$ $\sigma^{\mu\nu}:=(1/2)p^{\mu\alpha}p^{\nu\beta}[\partial_{\alpha}u_{\beta}+\partial_{\beta}u_{\alpha}-(2/p)p_{\alpha\beta}\partial_{\gamma}u^{\gamma}]$ 5.2 $\delta\rho\propto\exp(-i\omega t+ikz)$ ( ) (15) $\omega^{2}=c_{s}^{2}k^{2}, c_{s}^{2}:=\frac{dp}{d\rho}$ (20) $c_{s}^{2}$ $P=P(\rho)$ $c_{s}^{2}<0$ ( ) 6 [10]. 6.1 : $z$ $(n+3)$ $p(\geq 1)$ $+ \sum_{i=1}^{p}(dz^{i})^{2}$

145 $p$ $S^{n+1}$ $x^{a};=(x^{\mu}, r);=(ct, z^{i}, r)$ (21) $z^{i}$ $p$ ( ) $u^{\mu}$ $(p+1)$ $(u^{\mu}u_{\mu}=-1)$. $(r_{0}, u^{\mu})$ $T= \frac{n\hslash c}{4\pi k_{b}r_{0}}$ (22) $p$ $p$ $\delta g_{ab}$ (2) $T(r_{0})$ $u^{\mu}$ (18) $(r_{0}, u^{\mu})arrow(r_{0}(x^{\nu}), u^{\mu}(x^{\nu}))$ (23) $x^{\nu}=(t, z^{i})$ (2) $g_{ab}^{(0)}$ $p$ (2) $g_{ab}^{(0)}+\delta g_{ab}$ $\delta g_{ab}$ $X;=(r_{0}(x^{\nu}), u^{\mu}(x^{\nu}), \delta g_{ab}(x^{a}))$ (24) $x^{\mu}$ $-$ $\lambda:= \frac{x}{\partial_{\mu}x} $ (25) ( 1(b) $(\lambda\gg r_{0})$ $r_{0}/\lambda$ ) $X= \sum_{m=0}^{\infty}\epsilon^{m}x_{(m)}, \epsilon:=\frac{r_{0}}{\lambda}\ll 1$ (26) (2) $\sum_{m=1}^{\infty}\epsilon^{m}g_{(m)}^{ab}=0$ (27) $m=1$ $\partial_{\mu}$ (2) $r_{0}\partial_{\mu}\ln X=O(\epsilon)$ $\partial_{\mu}arrow\epsilon\partial_{\mu}$ (2)

146 (27) (derivative expansion) $r$ Kd ( $V$ [11]. $)$ $G_{(m\geq 1)}^{ab}=0$ $(x^{\mu}, r)$ $r$ $(r=r_{0})$ $(r=\infty)$ $x^{\mu}$ $\epsilon=r_{0}/\lambda$ (26) $\epsilon$ (18) ( ) ( ) (18)(19) $\partial_{\mu}t_{(m-1)}^{\mu\nu}=0$ 1 $\epsilon G_{(1)}^{ab}=0$ $(n+3+p)$ $P=- \frac{\rho}{n+1}=-\frac{\omega_{n+1}c^{4}}{16\pi G}r_{0}^{n}$ (28) $P$ $(p+1)$ $(n+1)$ 2 $\rho$ $0$ $\Omega_{n+1}$ $\epsilon G_{(1)}^{ab}+\epsilon^{2}G_{(2)}^{ab}=0$ $\partial_{\mu}t_{(0)}^{\mu\nu}=$ $\eta=\frac{\omega_{n+1}c^{3}}{16\pi G}r_{0}^{n+1}, \zeta=\frac{\omega_{n+1}c^{3}}{8\pi G}r_{0}^{n+1}(\frac{1}{p}+\frac{1}{n+1})$ (29) $\partial_{\mu}(t_{(0)}^{\mu\nu}+\epsilon T_{(1)}^{\mu\nu})=0$ $(p=1)$ $(r_{0}(t, z), u^{z}(t, z))$ (2) 5 (2) (18) (29) (28) $)$ (18) $T_{(m\geq 2)}^{\mu\nu}$ $G_{(m\geq 3)}^{ab}=0$ ( 6.2 (28) $c_{s}^{2};= \frac{dp}{d\rho}=-\frac{1}{n+1}<0$ (30) $P$ $p$ (29) 2 [10].

147 $\epsilon\sim \partial_{z}r_{0} \ll 1$ $ u^{\mu} $ $(r_{0}arrow 0)$ ( ) [5] ( ) $r_{0}\propto(t_{0}-t)$ 1 $n_{c}$ $\partial_{\mu}t_{(m\geq 2)}^{\mu\nu}=0$ 7 $(T_{ab}=\Lambda=0)$ (2) $(A<0)$ Ad /CFT(anti-de Sitter/conformal field theory) $S$ [12,13,14,15]. ( )10 3 4 1 [16]. ( ) 1/ [17, 18]. $r(t)\propto(t_{0}-$ [19,20], ( $AdS/$ CFT ). [1] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70 (1993) 2837. [2] G. T. Horowitz and K. Maeda, Phys. Rev. Lett. 87 (2001) 131301. [3] E. Sorkin, Phys. Rev. Lett. 93 (2004) 031601. [4] H. Kudoh and U. Miyamoto, Class. Quant. Grav. 22 (2005) 3853.

148 [5] L. Lehner and F. Pretorius, Phys. Rev. Lett. 105 (2010) 101102. [6] V. Cardoso and O. J. C. Dias, Phys. Rev. Lett. 96 (2006) 181601. [7] U. Miyamoto and. $i$ $K.$ Maeda, Phys. Lett. $B664$ (2008) 103. [8] W. W. Mullins, J. Appl. Phys. 28, 3, 333 (1957). [9] U. Miyamoto, Phys. Rev. $D78$ (2008) 026001. [10] J. Camps, R. Emparan and N. Haddad, JHEP 1005 (2010) 042. [11] 1995 [12] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, JHEP 0802 (2008) 045. [13] P. Kovtun, D. T. Son and A. $O$. Starinets, Phys. Rev. Lett. 94, 111601 (2005). [14] $54-3(2010)110.$ [15] $94-3(2010)350.$ [16] O. Aharony, S. Minwalla and T. Wiseman, Class. Quant. Grav. 23 (2006) 2171. [17] $K.$. Maeda and U. Miyamoto, JHEP 0903 (2009) 066. $i$ [18] M. M. Caldarelli, O. J. C. Dias, R. Emparan and D. Klemm, JHEP 0904, 024 (2009). [19] J. Eggers, Rev. Mod. Phys. 69, 865 (1997). [20] U. Miyamoto, JHEP 1010 (2010) 011.