流体とブラックホールの間に見られる類似性・双対性

Size: px
Start display at page:

Download "流体とブラックホールの間に見られる類似性・双対性"

Transcription

1 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ )

2 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$ $x^{a}+dx^{a}$ $ds^{2}= \sum_{a,b=0}^{3}g_{ab}dx^{a}dx^{b}$ (1) $g_{ab}$ ( $\Sigma$ ) $G_{ab}+ \Lambda g_{ab}=\frac{8\pi G}{c^{4}}T_{ab}$ (2) $G_{ab}$ $A$ 2 $G$ $T_{ab}$ (2) (2) ( ) $T_{ab}=(\rho+P)u_{a}u_{b}+Pg_{ab}$ (3) $(u_{a}, \rho, P)$ $(T_{ab}=\Lambda=0)$ 4 ( ) 2.2 (2) $T_{ab}=\Lambda=0$ ( ) $d s^{2}=-f(r)c^{2}dt^{2}+\frac{dr^{2}}{f(r)}+r^{2}d\omega_{2}^{2}, f(r)=1-\frac{r_{0}}{r}$ (4) $d\omega_{2}^{2}:=d\theta^{2}+\sin^{2}\theta d\phi^{2}$ $M$ 2 $r_{0}$ $r_{0}= \frac{2gm}{c^{2}}$ (5)

3 $\kappa$ 58 $r_{0}=0$ $f(r)\equiv 1$ $(r,\theta, \phi)$ 3 $r_{0}>0$ $r<r_{0}$ $r=0$ ( $)$ $r=r_{0}$ $M$ $r$ $m$ $v$ ( $)$ $\frac{1}{2}mv^{2}-g\frac{mm}{r}=0$ (6) $v=v_{esc}:=\sqrt{\frac{2gm}{r}}$ (7) ( ) (7) $v_{e8c}arrow c$ $rarrow r_{0}=2gm/c^{2}$ $r$ $r_{0}$ $M$ $r_{0}$ $A=4\pi r_{0}^{2}$ $A$ $A+\delta A(\delta A\geq 0)$ $\delta(mc^{2})$ $\delta(mc^{2})=\frac{c^{2}}{8\pi G}\kappa\delta A$ (8) 2 $\kappa$ ( $\kappa=c^{2}/2r_{0}$ ) $Mc^{2}$ $U$ $T$ $A$ $S$ (8) $\delta U=T\delta S$ $i$ $r_{0}$ $\delta J$ 2 $J$ $Q$ (8) $\delta Q$

4 59 ( ) $T= \frac{\hslash}{2\pi ck_{b}}\kappa$ (9) ( ) $k_{b}$ 3 (8) ( ) $S= \frac{c^{3}k_{b}}{4g\hslash}a=\frac{k_{b}}{4\ell_{p}^{2}}a$ (10) $\ell_{p}:=\sqrt{g\hslash}/c^{3}$ $(\sim 10^{-33} cm)$ (10) 4 $(c, G, \hslash, k_{b})$ ( $e^{i\pi}=-1$ ) [ (4) $f(r) arrow 1-(\frac{r_{0}}{r})^{n},$ $d\omega_{2}^{2}arrow d\omega_{n+1}^{2},$ $n=1,2,3,$ $\ldots$ (11) 4 $r_{0}$ $(n+1)$ $S^{n+1}$ 5 $+dz^{2}$ $z$ $(n+4)$ $r_{0}$ $(n+1)$ $S^{n+1}$ $z$ ( $2[a]$ ) 3 $c=g=\hslash=k_{b}=1$ $c=g=\hslash=k_{b}=1$ 4 (2)

5 60 2: $[(a)arrow(b)arrow(c)arrow(d)$ $z$ $(r\cdot=0)$ $S^{n+1}$ $]$ $z=$ $(n+1)$ 3.2 (2) (Gregory-Laflamme) [1] $\delta g_{ab}\propto\exp(-i\omega t+ikz)$ (12) $\omega^{2}<0$ ( $\omega$ ) ( 3) $\lambda:=2\pi/k$ $L$ $L>\lambda_{c^{\backslash },}:=2\pi/k_{ }\sim r_{0}/\sqrt{n}$ $k(0<k<k_{c}\sim\sqrt{n}/r_{0})$ $L$ $(r_{0}\gg$ $r_{0}$ $L)$ $r_{0}\lessapprox L$ $r_{0}$ ( ) 5 6 $n\geq n_{c}:=10$ $[3]$ [5] (5 ) $[$ $2(c)]$ $[$ $2(d)]$ $[$ $2(b)]$ $r\cdot(t)\propto(t_{0}-t)$ ( $t_{0}$ ) 5 $-\cdot$ 6 [2]

6 61 3: $\delta g_{ab}\propto\exp(-i\omega t+ikz)$ $\omega(k)$ $0<k<k_{c}\sim\sqrt{n}/r_{0}$ $(-i\omega>0)$ 7 [ ( ) ( ) ( ) $[6]_{0}$ ( 2 ) $(n>n_{c})\sim$ [7] $P$ $v^{i}(i=$ $\rho$ $1,2,$ $\ldots,p)$ $\partial_{t}\rho+\partial_{i}(\rho v^{i})=0,$ $\partial_{t} (\rho v^{i})+\partial_{j}\pi^{ij}=0$ (13) 7 [1] ( )

7 $\nu$ $\zeta$ 62 ( ) $\Pi_{ij}=\Pi_{ij}^{(0)}+\Pi_{ij}^{(1)}$ $\Pi_{ij}^{(0)}=pv_{i}v_{j}+P\delta_{ij}$ $\Pi_{ij}^{(1)}=-\eta(\partial_{i}v_{j}+\partial_{j}v_{\dot{t}}-\frac{2}{p}\delta_{ij}\partial_{k}v^{k})-\zeta\delta_{ij}\partial_{k}v^{k}$ (14) $\eta$ $\eta$ $\Pi_{ij}^{(0)}$ $\Pi_{1j}^{(.1)}$ $x\vdash-$ (13) ( ) $T_{\mu\nu}$ $\partial_{\mu}t^{\mu\nu}=0, x^{l^{\iota}};=(ct, z^{i})$ (15) ) $\eta,$ (13) ( $P$ $\rho$ $\Pi_{ij}^{(0)}+\Pi_{ij}^{(1)}$ $\Pi_{ij}^{(m)}$ $\Pi_{ij}^{(m\geq 2)}$ $m$ $\partial_{\mu}t^{\mu\nu}=0, T^{\mu\nu}=\sum_{m=0}^{\infty}\epsilon^{m}T_{(m)}^{\mu\nu}$ (16) $\epsilon$ ; $T_{(m>1)}^{\mu\nu}$ $\epsilon(<1)$ $O(\epsilon)$ $T_{(0)}^{\mu\nu}=\rho u^{\mu}u^{\nu}+pp^{\mu\nu}$ (17) $T_{(1)}^{\mu\nu}=-2_{\mathcal{C}7 }\sigma^{\mu\nu}-c\zeta P^{\mu\nu}\partial_{\alpha}u^{\alpha}$ $T^{\mu\nu}$ $(0)$ (3) $P^{\mu\nu}:=u^{\mu}u^{\nu}+\eta^{\mu\nu}$ $\eta^{\mu\nu}=$ diag $(-1,1, \ldots, 1)$ 1 ) $\mu$ ( $\sigma^{\mu\nu}:=(1/2)p^{\mu a}p^{\nu\beta}[\partial_{\alpha}u_{\beta}+\partial_{\beta}u_{\alpha}-(2/p)p_{\alpha\beta}\partial_{\gamma}u^{\gamma}]$ 4.2 $\delta\rho\propto\exp(-i\omega t+ikz)$

8 $c_{s}^{2}$ 63 (13) ( ) $\omega^{2_{=c_{s}^{2}k^{2}}^{j}}, c_{s}^{2};=\frac{dp}{d\rho}$ (18) $P=P(\rho)$ $c_{\hslash}^{2}<0$ ( ) 5 [lo] 5.1 : $z$ $p(\geq 1)$ $(n+3)$ $+ \sum_{i=1}^{p}(dz^{i})^{2}$ $p$ $S^{n+1}$ $x^{a}:=(x^{\mu}, r);=(ct, z^{i},r)$ (19) $z^{i}$ $p$ ( ) $(p+1)$ $(u^{\mu}u_{\mu}=-1)$ $(r_{0}, u^{/1})$ $r_{0}$ $T= \frac{n\hslash c}{4\pi k_{b}r_{0}}$ (20) $p$ $p$ $z^{2}\underline{\nearrow\sim}\prime z^{1}$ 4: 2

9 64 $\delta g_{ab}$ (2) (16) $z^{i}$ $p$ $p(\geq 2)$ $p=1$ 2 4 $p$ $r_{0}$ $u^{\mu}$ $T(r_{0})$ $(r_{0}, u^{\mu})arrow(r_{0}(x^{\nu}), u^{\mu}(x^{\nu}))$ (21) $x^{\nu}=(t, z^{i})$ 4 ( $)$ $T$ $u^{\mu}$ ( $r_{0}$ ) (2) $g_{ab}^{(0)}$ $p$ (2) $g_{ab}^{(0)}+\delta g_{ab}$ $\delta g_{ab}$ $X;=(r_{0}(x^{\nu}), u^{\mu}(x^{\nu}), \delta g_{ab}(x^{a}))$ (22) $X^{\int\iota}$ $\lambda:= \frac{x}{\partial_{\mu}x} $ (23) $(\lambda\gg r_{0})$ ( 2(b) ) $r_{0}$ $r_{0}/\lambda$ $X= \sum_{m=0}^{\infty}\epsilon^{m}x_{(m)}, \epsilon:=\frac{r_{0}}{\lambda}\ll 1$ (24) (2) $\sum_{n=1}^{\infty}\epsilon^{m}g_{(m)}^{ab}=0$ (25) $m=1$ $r_{0}\partial_{\mu}\ln X=O(\epsilon)$ (2) $\partial_{\mu}arrow\epsilon\partial_{\mu}$ (2) (25) (derivative expansion) $r$ Kd ( $V$ $)$ [11]

10 $\rho$ 65 $G_{(m\geq 1)}^{ab}=0$ $(x^{\mu}, r)$ $r$ $(r=r_{0})$ $(r=\infty)$ $x^{\mu}$ (24) $J\triangleright$ $\epsilon=r_{0}/\lambda$ $\epsilon$ (16) ( ) ( ) (16) (17) $\partial_{\mu}t_{(,n-1)}^{\mu\nu}=0$ $(n+3+p)$ 1 $\epsilon G_{(1)}^{ab}=0$ $P=- \frac{\rho}{n+1}=-\frac{\omega_{n+1}c^{4}}{16\pi G}r_{0}^{n}$ (26) $P$ $(p+1)$ $\partial_{\mu}t_{(0)}^{\mu\nu}=0$ $\Omega_{n+1}$ $(n+1)$ 2 $\epsilon G_{(J)}^{ab}+\epsilon^{2}G_{(2)}^{ob}=0$ $\eta=\frac{\omega_{n+1}c^{3}}{16\pi G}r_{0}^{n+1},$ $\zeta=\frac{\omega_{n+1^{c^{3}}}}{8\pi G}r_{0}^{n+1}(\frac{1}{p}+\frac{1}{n+1})$ (27) 8 $\vdash-$ $\partial_{\mu}(t_{(0)}^{l^{\iota\nu}}+\epsilon T_{(1)}^{\mu.\nu})=0$ 4 (2) (16) (26) (27) $r_{0}$ (16) $T_{(m\geq 2)}^{\mu\nu}$ $G_{(m\geq 3)}^{ab}$ $=$ 0 ( $)$ 5.2 (26) $c_{s}^{2};= \frac{dp}{d\rho}=-\frac{1}{n+1}<0$ (28) $p$ $p$ [10]. (27) 3 $\epsilon\sim \partial_{z}r_{0} \ll 1$ $r_{0}$ $ u^{\mu} $ 8 $(r_{0} (t, z), u^{z}(t, z))$ $(p=1)\iota_{\llcorner}^{\sim}$ (2)

11 66 ( ) [5] ( ) ro $\propto(t_{0}-t)$ 2 $n_{c}$ $\partial_{\mu}t_{(m\geq 2)}^{\mu\nu}=0$ $(r_{0}arrow 0)$ 6 $(T_{ab}=\Lambda=0)$ (2) $(A <0)$ $AdS/$CFT(ailti-de Sitter/conformal field theory) [12] ( ) $[13]_{0}$ ( ) [14] $r(t)\propto(t_{0}-t)$ $[$15, $16]$ ($AdS/$CFT $(AdS/$CFT $l$ $)$ ) $AdS/$CFT [17,18] 5

12 $\eta$ 67 5: 5 RHIC (Relativistic Heavy Ion Collider) LHC (Large Hadron Collider) ( ) 5 ( ) RHIC $\eta$ ( ) $\frac{\eta}{s}=\frac{\hslash}{4\pi k_{b}}$ (29) [19] (29) 5 $p$ $p$ (10) $s= \frac{\omega_{n+1}c^{3}k_{b}}{4g\hslash}r_{0}^{n+1}$ (30) $\mathcal{s}$ (27) $r_{0}$ ( (29) [1] R. Gregory and R. Laflamme: Black strings and $p$-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837, [arxiv:hep-th/ ]. [2] G. T. Horowitz and K. Maeda: Fate of the black string instability, Phys. Rev. Lett. 87 (2001) , [arxiv:hep-th/ ]. [3] E. Sorkin: $A$ critical dimension in the black-string pha.se transition, Phys. Rev. Lett. 93 (2004) , [arxiv:hep-th/ ].

13 68 [4] H. Kudoh and U. Miyamoto: On non-uniform smeared black branes, Class. Quant. Grav. 22 (2005) 3853, [arxiv:hep-th/ ]. [5] L. Lehner and F. Pretorius: Black Strings, Low Viscosity Fluids, and Violation of Cosmic Censorship, Phys. Rev. Lett. 105 (2010) , $[arxiv: $ [hep-th] $].$ [6] V. Cardoso and O. J. C. Dias: Gregory-Laflamme and Rayleigh-Plateau instabilities, Phys. Rev. Lett. 96 (2006) [arxiv:hep-th/ ]. $i$ [7] U. Miyamoto and $K.$. Maeda: Liquid bridges and black strings in higher dimensions, Phys. Lett. $B664$ (2008) 103, $[arxiv: $ [hep-th] $].$ [8] M. M. Caldarelli, O. J. C. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 0904, 024 (2009), $[arxiv: $ [hep-th] $].$ [9] U. Miyamoto: Curvature driven diffusion, Rayleigh-Plateau, and Gregory-Laflamme, Phys. Rev. $D78$ (2008) , $[arxiv: $ [hep-th] $].$ [10] J. Camps, R. Emparan and N. Haddad, Black Brane Viscosity and the Gregory- Laflammc $I_{Ilstab;]ity},$ JHEP 1005 (2010) 042, $[arxiv: $ [hep-th] $].$ [11] 1995 [12] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 0802 (2008) 045, $[arxiv: $ [hep-th] $].$ [13] O. Aharony, S. Minwalla and T. Wiseman: Plasma-balls in large $N$ gauge theories and localized black holes, Class. Quant. Grav. 23 (2006) 2171, [arxiv:hep-th/ ]. $i$ [14] $K.$. Maeda and U. Miyamoto: Black hole-black string phase transitions from hydrodynamics, JHEP 0903 (2009) 066, $[arxiv: $ [hep-th] $].$ [15] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys. 69, 865 (1997). [16] U. Miyamoto: One-Dimensional Approximation of Viscous Flows, JHEP 1010 (2010) 011, $[arxiv: $ [hep-th] $].$ [17] $AdS/CFT$ 54-3(2010)110 [18] $94-3(2010)350$ [19] P. Kovtun, D. T. Son and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole $p1_{1}$ysics, Phys. Rev. Lett. 94, (2005) [hep- $th/ ].$

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 [email protected] D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

( ) : (Technocolor)...

( ) : (Technocolor)... ( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: [email protected] 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: [email protected] Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

研究成果報告書

研究成果報告書 Simulation Study of Interaction between Alfvén Eigenmodes and Energetic Particles (TAE ) TAE TAE MHD ITER We studied the interaction between Alfvén eigenmodes and energetic particles in fusion plasmas

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

RX501NC_LTE Mobile Router取説.indb

RX501NC_LTE Mobile Router取説.indb 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 19 20 21 22 1 1 23 1 24 25 1 1 26 A 1 B C 27 D 1 E F 28 1 29 1 A A 30 31 2 A B C D E F 32 G 2 H A B C D 33 E 2 F 34 A B C D 2 E 35 2 A B C D 36

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

Microsoft PowerPoint _9JPS_Tanaka_reduced_

Microsoft PowerPoint _9JPS_Tanaka_reduced_ Black Holes in Modified Gravity Takahiro Tanaka (YITP) Inspiraling-coalescing binaries 連星系からの重力波からは様々な情報を引き出せる Inspiral phase (large separation) クリーンな系 質点近似がよい星の内部構造はほとんど無視できる 正確な波形の予測が可能 for detection

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

1 2

1 2 1 2 4 3 5 6 8 7 9 10 12 11 0120-889-376 r 14 13 16 15 0120-0889-24 17 18 19 0120-8740-16 20 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58

More information

3 5 6 7 7 8 9 5 7 9 4 5 6 6 7 8 8 8 9 9 3 3 3 3 8 46 4 49 57 43 65 6 7 7 948 97 974 98 99 993 996 998 999 999 4 749 7 77 44 77 55 3 36 5 5 4 48 7 a s d f g h a s d f g h a s d f g h a s d f g h j 83 83

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. ---

. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. --- . ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. -----------------------------------------------. -----------------------------------------------

More information