ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

Similar documents
P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ,

07.報文_及川ら-二校目.indd

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

genron-3

Part () () Γ Part ,

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

Microsoft Word - 11問題表紙(選択).docx


II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

i

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

Gmech08.dvi

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg ,

2011de.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

1

30

 

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Gmech08.dvi

master.dvi


00~33.換気マニュアル

I ( ) 2019


<82D282A982C1746F95F18D908F57967B95B E696E6464>

秋植え花壇の楽しみ方

untitled


untitled

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

(1) (2) (3) (4) (5) 2.1 ( ) 2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

The Physics of Atmospheres CAPTER :


0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2


緑化計画作成の手引き 26年4月版

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

K E N Z OU


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

x ( ) x dx = ax

untitled

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Untitled


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Note.tex 2008/09/19( )

<4D F736F F D B BA908593B98AC782AB82E593E082CC88C091538AC7979D82C98AD682B782E992868AD495F18D908F912E646F63>

後期化学_01_濃度

1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

P P P P P P P P P P P P P


QMII_10.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

現代物理化学 1-1(4)16.ppt

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

i 18 2H 2 + O 2 2H 2 + ( ) 3K

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m



2009 June 8 toki/thermodynamics.pdf ) 1

訪問入浴Q&A PDFファイ ル httpwww.care-mirai.commiraihomehelpe_buth.html.docx

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2007年08月号 022416/0812 会告

ε

limit&derivative

meiji_resume_1.PDF

gr09.dvi

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

chap03.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

表紙 PDF

経済論集 46‐1(よこ)(P)/2.三崎

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Transcription:

I. 2006.6.10 () 1 (Fortan mercury barometer) 1.1 (Evangelista orricelli) 1643 760mm 760mm ( 1) (P=0) P 760mm 1: 1.2 P, h, ρ g P 0 = P S P S h M M = ρhs Mg = ρghs P S = ρghs, P = ρgh (1) 1

ρ(= 13.5951 10 3 kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa 1992 11 mb hpa 1mm 1mmHg hpa 1mmHg = 1.333224hPa, 1hPa = 0.750062mmHg (2) 1 (=1atm) 760mmHg=1013hPa 1.4 1. ( ) 2. 2(a) A B E C D 3. 2(b) F G 0.1mmHg A 4. 1.5 Scale P raw, P P i P i = P raw + P (3) 0.4 mmhg P = 0.4 mmhg. 2

2: 1.6 scale 0 C t [ C] C t P t P t = P i + C t (4) µ, λ P t = 1 + λt P i 1 + µt C t (5) C t = P i (µ λ)t 1 + µt (6) µ = 0.0001818 [ C 1 ], λ = 0.0000184 [ C 1 ] 3 1.7 (g 0 = 9.80665 m s 2 ) P g, C g P g = P t + C g (7) 3

1 f(x) 0 f(x)-1 0.999-0.001 0.998-0.002 P t /P i 0.997 C t /P i -0.003 0.996-0.004 0.995-0.005 0.994 0 5 10 15 20 25 30 35 t [ o C] -0.006 0 5 10 15 20 25 30 35 t [ o C] 3: P g P t = g g 0 (8) C g = P g P t = P t g g 0 g 0 (9) 2006 g = 9.7958803 m s 2 1.8 dp dz = ρg (10) P = nk B R = 287.05 J kg 1 K 1 1 P = ρr (11) (10) dp dz = P g R ( = t + 273.15 [K]) (z = 0) P 0 (12) ln P 0 P (z) = 1 z g dz (13) R 0 g m z 0 z dz (14) 1 14 N 2 78%, 16 O 2 21%, 40 Ar 1% 287.1 4

ln P 0 P (z) = gz (15) R m ( P (z) = P 0 exp gz ) R m (16) z P (z) P g exp P 0 m m = 273.15 + t m + ε m (17) t mc t 0.5 C/100m t m = t + 0.005Z/2 = t + 0.0025Z (18) ε m ε m = At 2 m + Bt m + C (19) A, B, C A B C t m < 30.0 0 0 0.090 30.0 t m < 0.0 0.000489 0.0300 0.550 0.0 t m < 20.0 0.002850 0.0165 0.550 20.0 t m < 33.8-0.006933 0.4687-4.580 33.8 t m 0 0 3.340 P 0 5 1.0039 1.0038 old 20<t m <33.8 0<t m <20 0.0017 0.00165 old 20<t m <33.8 0<t m <20 1.0037 0.0016 P/P 1.0036 1.0035 log 10 P/P 0.00155 1.0034 0.0015 1.0033 0.00145 1.0032 0 5 10 15 20 25 30 35 [t / o C] 0.0014 0 5 10 15 20 25 30 35 [t / o C] 4: 5

2 2.1 ( R[%]) R = e 100 (20) e s e e s 2.2 ( ) ( 5m/s ) 2.3 2.4 e (Sprung) e = e s (t w ) A 755 P (t d t w ) (21) t d, t w e s (t w ) t w P A 0.50, 0.44 e, e s mmhg hpa Appendix A e s (etens, 1930) e s (t) = 6.11 10 at/(b+t) [hpa] (22) 6

a = 7.5, b = 237.3 t = 0 C () t = 100 C 1% Appendix?? R = ( ) e 100 (23) e s (t d ) 2.5 t e R R < 100% 100% t dew e s (t dew ) = e (24) A d w ρ d C p ( d w ) (25) ρ d L = 2.50 10 6 [J kg 1 ] (ρ v,s ρ v )L (26) ρ v, ρ v,s ( ) (ρ v,s ρ v )L = ρ d C p ( d w ) (27) P e e = ρ v R v (28) P e = ρ d R d (29) 7

R d R v = M v M d ε = 0.622 (30) e P e = ρ v R v = 1 ρ v (31) ρ d R d ε ρ d e/p < 0.04 P e P e s (27) e P = 1 ρ v (32) ε ρ d e s P = 1 ρ v,s (33) ε ρ d e = e s C p εl P ( d w ) = C p εl P (t d t w ) (34) t e = e s AP (t d t w ) (35) A ( Sprung ) JIS A = 6.62 10 4 K 1 A [6] B - B.1 [2] ρ v = 1/ρ d Q = ds = du + edv (36) e (e = e s ), e s ds = S v S l ( v, w [vapor] [liquid] ) (S v S l ) = u v u l + e s (v v v l ) (37) 8

u l + e s v l S l = u v + e s v v S v (38) + d, e s + de s 2 du l + e s dv l + v l de s S l d ds l = du v + e s dv v + v v de s S v d ds v (39) (38) ds = du + e s dv v l de s S l d = v v de s S v d (40) S v S l = d Q de s = = L - (41) L d (42) (v v v l ) B.2 Gibbs [3] 2, P µ µ l (P, ) = µ v (P, ) (43) P + dp, + d µ l (P + dp, + d ) = µ v (P + dp, + d ) (44) P, ( ) ( ) ( ) ( ) µl µl µv µv dp + d = dp + d (45) p P p P [( ) µl p ( ) ] µv dp = p [( ) µl P ( ) ] µv d (46) P Gibbs nµ µ dµ = vdp Sd (47) dp, d ( ) µ P = v, ( ) µ = S (48) P 9

- (S v S l )d = (v v v l )dp (49) dp d = S v S l v v v l (50) B.3 - (P, ) v l v v (v v v l ) v v v l v v de s = L v v d (51) e s v v = R v (52) de s e s L = L R v d 2 (53) ln e s = L R v 1 + C (54) (C ) ( e s = C exp L ) R v (55) t = 0 C, = 273.15K 6.11 hpa ( ) 6.11hPa = C L exp R v 273.15K (56) ( ) C L = 6.11hP a exp R v 273.15K [ ]) e s = 6.11hPa exp ( LRv 1 10 (57) (58) 0 = 273.15K 10

10000 simple theory etens 1013.25 1000 e s 100 10 1 0 20 40 60 80 100 t [ o C] 5: t = 0 C 6.11 hpa, 100 C 1013.25 hpa [1] 2 1999 [2] 2000 [3] 1980 [4] 1998 9 2002 10 http://www.kishou.go.jp/know/ [5] http://www.okinawa-jma.go.jp/ishigaki/school/kis home.htm [6] ( 2) 1996 ES- PEC No.6 p.1 http://www.espec.co.jp/tech-info/tech info/index.html 11