JIS Z803: (substitution method) 3 LCR LCR GPIB

Similar documents
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Part () () Γ Part ,

Gmech08.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

keisoku01.dvi

高等学校学習指導要領

高等学校学習指導要領

Gmech08.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

35

JAJP.qxd


D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

GJG160842_O.QXD

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1).1-5) - 9 -

Products catalog

(/6) MFeO M C C Mn-Zn Ni-Zn Mn-Zn MHz Ni-Zn MHz Mn-Zn to Ni-Zn to 8 J/kg K to W/m K. 6 /K to 7 N/m mm N/m. N/m - / 6 / j_.fm

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

untitled

I 1

c 2009 i

C-œI‡Ä‡¢

i

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

PDF

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

4‐E ) キュリー温度を利用した消磁:熱消磁

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

all.dvi

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

untitled

OPA134/2134/4134('98.03)

all.dvi


2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

LD

QMI_10.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

応用数学特論.dvi

学習内容と日常生活との関連性の研究-第2部-第4章-1

NewsLetter-No2

( ) ,

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Mott散乱によるParity対称性の破れを検証

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

pc817xj0000f_j

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (



広報1505月号.indd

RIMS98R2.dvi

untitled

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

main.dvi

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

ELECTRONIC COMPONENTS & DEVICES

15

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Note.tex 2008/09/19( )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


QMI_09.dvi

Ÿ_Ł¶-“sŒ{’¨−î

QMI_10.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

main.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

基礎数学I

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

30

Gmech08.dvi

Transcription:

LCR NMIJ 003 Agilent 8A 500 ppm

JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB

Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6

V, A LCR meter z o I V D A V V 3 3 I Z DUT 7 [Ω] 0 mh at 59 Hz 0 m 00.880 00.875 00.870 00.865 00.860 00.855 00.850 00.85 00.80 00.835 5 ppm 3 (Lp) (Lc) (Hc) (Hp) 0 6 8 0 [m] (LCR meter: Agilent 8A) 8

at 59 Hz 90 mv [ppm] 0 30 0 0 0-0 -0 80 Ω 00 Ω 0 Ω 80 Ω 50 00 50 00 50 [mv] (LCR meter: Agilent 8A) 9 00.9 Ω 0. Ω 0.5 ma 0.5 ma 00.9 Ω 0. Ω 00 mv 0.977 ma 0.975 ma 0 mv 0.507 ma 0.50 ma LCR 00 Ω 0 ppm 0

LCR r x x = LCR y = fr ( rx, ) LCR y = f( x) = f ( rx, ) x = x+ ( y y) x x x 0 Taylor frr ( x0) frx ( x0) y = f( x ) ( ) ( ) ( ) ( ) 0 + x x0 + δ xx, 0 f x f x Xr 0 Xx 0 R X f R fr fx fx frr =, frx =, fxr =, fxx = r x r x X LCR f ( x ) f ( x ) Rr 0 Rx 0 y y F( x0 ) = fxr ( x0) fxx ( x0) y = f( x0) + F( x0) ( x x0) + δ( x, x ) ε 0 y = f( x0) + F( x0) ( x x0) + δ( x, x ) θ 0 δ x x+ ( y y) = x+ F( x0) ( x x) + δ( x, x0) δ( x, x0) = x + ( x ) ( x x ) + δ( x, x ) δ( x, x ) 0 0 0 ( x0) f ( x0) ( x ) f ( x ) x frr Rx ε r θ x ( x0) = F( x0) E= = fxr 0 Xx 0 θr ε x E x 0

K. Suzuki et al., A Calibration Method for Four- Terminal-Pair High-Frequency Resistance Standards, IEEE Trans. Instrum. Meas., vol., no.3, pp.379-38,993. e X x X θ x O e x x Ζ O O Impedance plane r y θ r R e r e R ε r, ε x θ r, θ x Z O δ = (δ r, δ x ) y Ax + ZO ( + εr) cosθr ( + εx) sinθx A ( + εr) sinθr ( + εx) cosθx ( ) δ = y Ax + Z O 3 x 0 ε r, ε x θ r, θ x δ x 0

ε x < 500 0-6 0.005 C: µf ppm of µf C C Meas C - C [nf] [nf] Span Error of LCR meter (Agilent 8A, C = µf) Date: 00/May/30 Span 500 ppm -0.00 C: 0 nf ( ~ C/ C = %) -0.003 0.00 0.003 0.00 0.00 0.000-0.00 595.7 Hz 000.00 Hz Span -500 ppm -0.00-0.005 0 6 8 0 Increment Increment of Capacitance of capacitance C C [nf] [nf] 5 30 ppm H. Fujimoto et. al, Development of Four-Terminal Pair High Capacitance Standards and Calibration Method Using Resister Standards, 00 NCSL Japan Forum, in Japanese. tanδ Q or 6

( ) δ = y Ax+ Z O r = X ( ) t t x= r x, y= ( R X) X = a x + a 0 σ (δ X ) X i X i δ X,i O x x i 7 I Z δ X / Z.5 0-6 (0 mh, 00 mh) Improved Voltage Method () V V 3 V Z = I V 3 V3 = 0 Z = KZ V' ' KV Relative Error δ X/ Z [ppm] 3.0.0.0 0.0 -.0 -.0-3.0 -.0 σ (δ X / Z ) =. ppm 0.9985 0.9990 0.9995.0000.0005.000.005 Ratio Z '/Z () K.Suzuki et al.: Non-Linearity Evaluation Method of Four-Terminal-Pair LCR Meter, NCSL International Conference Proceedings 00 8 3 5 6

δ X / Z <.5 0-6 (0 mh, 00 mh) Improved Current Method () KV V σ(δ B / Y ) =.3 ppm Y V 3 Y p KVY p I = Y V V3 = 0 I V 3 I' ' KY Y = + p Y Y Relative Error δb / Y [ppm].0 3.0.0.0 0.0 -.0 -.0-3.0 -.0 0.9985 0.9990 0.9995.0000.0005.000.005 Ratio (+ Y p K/Y ) () K.Suzuki et al.: Non-Linearity Evaluation Method of Four-Terminal-Pair LCR Meter, NCSL International Conference Proceedings 00 9 3 5 6 X O x x x 0 ε, θ, δ No LCR Yes Taylor No Yes R 0

0 0-6 Improved Current Method (0 mh at 595.7 Hz) Relative Error δb / Y [ppm] 0.0 8.0 6.0.0.0 0.0 -.0 -.0-6.0-8.0 LCR meter: Agilent 8A S/N MY007, Voltage: 6 mv, 3 5 6 0.9985 0.9990 0.9995.0000.0005.000.005 Ratio LCR Agilent 8A 000 Hz