1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Similar documents
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

TeV b,c,τ KEK/ ) ICEPP

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Kaluza-Klein(KK) SO(11) KK 1 2 1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

TOP URL 1

main.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

0406_total.pdf

,,..,. 1

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

SO(2)

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

nakayama.key

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

05Mar2001_tune.dvi

DVIOUT-fujin

Note.tex 2008/09/19( )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

TOP URL 1

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

untitled

スライド タイトルなし

eto-vol1.dvi

85 4

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

untitled

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21


5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

keisoku01.dvi

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x



量子力学 問題

70 : 20 : A B (20 ) (30 ) 50 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

500 6 LHC ALICE ( 25 ) µsec MeV QGP

Untitled

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


LLG-R8.Nisus.pdf

Z: Q: R: C:

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Mott散乱によるParity対称性の破れを検証

液晶の物理1:連続体理論(弾性,粘性)

TOP URL 1

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

QMII_10.dvi

( ) ,

km_atami09.ppt

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

: , 2.0, 3.0, 2.0, (%) ( 2.

本文/目次(裏白)

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

all.dvi

meiji_resume_1.PDF

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

GJG160842_O.QXD

Undulator.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

『共形場理論』

( ) ( )

基礎数学I

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Z: Q: R: C: sin 6 5 ζ a, b

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

untitled

chap9.dvi

2000年度『数学展望 I』講義録

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

The Physics of Atmospheres CAPTER :

Transcription:

August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM.......................... 9 1.7 :................... 12 1.8 - CP.................... 13 1.9.................................. 15 1.10................................. 17 1.11........................ 19 1.12....................... 20 1.13...................................... 21 1.14...................................... 22 1 1.1 1960 1970 1935 1

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (2b) (W ±, Z 0 ) ( ) 1 1 2,3 2 3 * 3 4) 3 * 1 2 ( ) 0 * 2 * 3 I.I.Rabi; 1944 2

Table 1: 1) u d s c b t 3 MeV 6 MeV 120 MeV 1.29 GeV 4.2 GeV 178 GeV ν 1 ν 2 ν 3 e µ τ? 0.009 ev 0.05 ev 0.549 MeV 105.7 MeV 1777 MeV * ** m 2 i j = m2 j m2 i m 2 i j max{m2 i, m2 j } 1: ( ) 2) 3) 3

1.2 1912 (Hess) 1937 5) 200m e 2.3 10 6 1935 100 100 ( 6) ) 7) 10 12 1942 1947 π µ π ( ) π 4

1.3 1947 π 8) π 2: ( ) π + p K 0 + Λ 0, K 0 π + +π, Λ 0 π +p ( ) 2 π + p K 0 + Λ 0, K 0 π + + π, Λ 0 π + p (3) 10 8 10 10 π 10 ( 30cm ) 10mb = 10 26 cm 2 5

(1953) ( ) K +, K 0 S = +1 Λ 0, Σ S = 1 π S=0 (3) * 4 (K +, K 0 ), (Σ +, Σ 0, Σ ) p n 1/2 B 3 I 3 Q Q = I 3 + B + S 2 = I 3 + Y 2 Y ( ) (4) 1950-60 1956 (p, n, Λ 0 ) (IOO) (20% ) ( ) IOO SU(3) IOO 8 ( 8 ) η SU(3) 1/2 8 8 (8-foldway) (p, n, Λ) SU(3) ( ) (u,d,s) ( 1964) * 4 s 6

Table 2: u d s I 1/2 1/2 0 I 3 +1/2-1/2 0 S 0 0-1 B 1/3 1/3 1/3 Y 1/3 1/3-2/3 Q +2/3-1/3-1/3 (uud) (udd) (uds) π u d ū, d (1969 1980) ( s ) 1.4 200 (105.66 MeV) µ e + γ (5) (µ ± e ± + 2ν) 2 2 7

3 3: ν e = ν µ µ e + γ { (n = udd) (p = uud) + e + ν)} ν e ( ν e ) (ν µ ) π (π + µ + + ν) ν µ (ν µ + d µ + u) 1962 9) 2 (ν e, e ), (ν µ, µ ) e- µ- ( ) (1) (ν, e, µ ) (p, n, Λ) *5 10) (2) ( 1.10) 11) 1.5 u,d,s SU(3) * 6 s d * 5 * 6 QCD SU(3) SU(3) 8

2 (u,d) (u,s) (W) (u,d) (u,s) *7 W (N.Cabibbo) d d d = d cos θ c + s sin θ c, sin θ c 0.224 (6) (u,d ) 2 W ( ) Λ g 4, g 4 cos 2 θ c, g 4 sin 2 θ c 4: (a) µ ν µ + e + ν e (b) d u + e + ν e (c) s u + e + ν e 1.6 GIM Z 0 ( 5) Q 1 = u d = u d cos θ c + s sin θ (7) c * 7 9

5: (a) ν µ + e ν µ + e (b) ν µ + u(d) ν µ + u(d) j NC1 Q 1 τ 3 Q 1 ūu d d = ūu cos 2 θ c dd sin 2 θ c ss cos θ c sin θ c ( ds + sd) (8) u, d u, d ū, d 1-3 Z 0 5(b) d s (FCNC=Flavor Changing Neutral Current) K 0 µ µ +, K + π + ν ν ( 6(a)(b)) (Branching Ratio) BR(K 0 µ µ + ) = 7.27 ± 0.14 10 9 (9) BR(K + π + ν ν) = 1.6 ± 1.8 10 10 (10) 1) FCNC 2 d s = U d s = cos θ c sin θ c sin θ c cos θ d c s (11) d d s s s c 1 (u,d ) 2 Q 2 = c s = u s cos θ c d sin θ (12) c 10

6: GIM (a) K 0 µ µ (b) K + π + ν ν Z (c) (d) (e) (f) (c) (d) (m u = m c ) 11

Q 1 Q 2 j NC2 Q 2 τ 3 Q 2 = cc s s = cc cos 2 θ c ss sin 2 θ c dd + cos θ c sin θ c ( ds + sd) (13) j NC Q 1 τ 3 Q 1 + Q 2 τ 3 Q 2 = ūu + cc dd ss (14) FCNC GIM (Glashow-Illioupoulos- Maiani) FCNC 6(c) (f)) GIM m u = m c (c) (e) (d) (f) GIM u,d,s (1970) c - c 1.7 : J/ψ (= c c) p + p J/ψ + X, J/ψ e e + (15a) e + e + J/ψ e e +, µ + µ, (15b) 11 3097 MeV 4 c c J/ψ J/ψ c c ( ) 12

( ) ( ) b (1977) - (1994) 1.8 - CP 3 (u,d),(c,s),(t,b) 3 3 Q d d s b d = U CKM s b U CKM CKM (Cabibbo-Kobayashi-Maskawa) GIM Q 3 = t u b, Q u = c (17) t 3 2 Q 1 τ 3 Q 1 + Q 2 τ 3 Q 2 + Q 3 τ 3 Q 3 = Q u Q u Q d Q d = Q u Q u Q d U UQ d = Q u Q Q d Q d (18) CKM u,c,t d,s,b u u Q u c = V c (19) t t 13 (16)

CKM Q uq d = Q uv UQ d V U U CKM CP - 3 CP K CP π K s CP K L 2 1964 K L ππ CP ( ) CP - 3 6 (1973) u,d,s 3 3 N N N 2 N C 2 = N(N 1)/2 2N 1 (2N-1) N 2 N(N 1) (N 1)(N 2) (2N 1) = (20) 2 2 N 2 CP CP N 3 (1974) (1977) (1994) 3 - CKM CP 14

1) 1 λ2 λ Aλ 3 (ρ iη) 2 U CKM = λ 1 λ2 Aλ 2 2 Aλ 3 (1 ρ iη) Aλ 2 1 1.9 (21a) λ = 0.2205 ± 0.0018, A = 0.80 ± 0.04 (21b) ) ) ρ = (1 λ2 ρ = 0.20 ± 0.09, η = (1 λ2 η = 0.33 ± 0.05 (21c) 2 2 (1975) 1777 MeV τ ν τ + l + ν l, l = e, µ (22a) τ ν τ + ū + d (π, ρ ) (22b) ν e, ν µ (ν τ, τ ) 3 3 4 ( MeV ) 3-4 (1979 7 ) 1989 LEP e + e + Z 0 eē, µ µ, τ τ, uū, c c, b b, N ν α ν α (23) Z N α=1 ν αν α Z N 2.994 ± 0.012 1) Z 4 m z /2 45 GeV Z 15 α=1

7: 3.0, 3.2, 3.4 12) (Ω B = ρ B /ρ c, ρ c = = 1.88 10 29 h 2 g/cm 2 ) ( / ) (2.7 ± 0.6) 10 5 2σ 25% 16

4 45 GeV 1.10 3 (ν α ) (ν i ) ν α = U αi ν i (24) i MNS( - - ) 11) 2 2 2 θ ν e cos θ sin θ ν µ E i p + m2 i 2p sin θ cos θ ν 1 (25) ν 2 ν i (t) >= ν i (0) > e ie it (26) t = 0 ν e t ν µ P(ν e ν µ ) = < ν µ (0) ν e (t) > 2 = 1 2 sin2 2θ[1 cos(e 1 E 2 )t] ( ) sin 2 2θ sin 2 1.27 m2 2E L m 2 = m 2 2 m2 1 (27a) (27b) L=ct km m 2 (ev) 2 E GeV ν e ν e P(ν e ν e ) = 1 P(ν e ν µ ) 17

3 MNS 1 c 13 s 13 e iδ c 12 s 12 1 U MNS = c 23 s 23 1 s 12 c 12 s 23 c 23 s 13 e iδ c 13 1 e iα e iβ (28a) c i j = cos θ i j, s i j = sin θ i j (28b) 3 CKM θ i j i j δ CP α, β / m 2 12 8 10 5 ev 2, sin 2 θ 12 0.3 (29a) m 2 23 2.5 10 3 ev 2, sin 2 θ 23 0.5 (29b) 1) 3 sin 2 θ 13 < 0.05 (29c) m 2 13 = m2 23 + m2 12 m2 23 (30) m(ν i ) 1 ev (31) m li M R m(ν i ) m2 l i M R (32) 18

m 2 e << m 2 µ << m 2 τ MNS s c 12 s 13 e 12 iδ 2 U MNS = s 12 c 2 12 2 1 2 c 12 0.84, s 12 0.55 (33) s 12 2 c 12 2 1 2 CKM (21a) CKM MNS 1.11 (Branching Ratio) 1) BR(µ e + γ) < 1.2 10 11 (34a) BR(µ eēe) < 1.0 10 12 (34b) BR(µ + N e + N) < 7.8 10 13 (34c) BR(τ l + γ ; l = e, µ) < 1 3 10 6 (34d) BR(τ l + l l ; l, l = e, µ) < 1.0 2.0 10 6 (34e) BR(τ l + m 0 ; m = π, K s, ρ, φ, ) < 1.0 9.0 10 6 (34f) (e, µ, τ) (ν e, ν µ, ν τ ) e- µ- τ ( ) 3 ν µ ν e µ e + γ (SUSY=super symmetry) SUSY ( 8 ) SUSY MEG (µ e + γ) PRISM 13) 19

8: SUSY SUSY µ R, ẽ R, B0 µ e + γ b s(d) + γ, s(d) + g(= gluon) b B- {B( bd) K ( sd) + γ, K( ss) + η (q q) } QCD 1.12 2 14) ( ) J µ A = g ψγ µ γ 5 ψ (35) ( ) ( 9) 20

9: Z 0, π 0 2γ f ( ) π 0 2γ ( 1.1 ) Z 0 2γ (Q u + Q d ) + Q ν + Q e = 3 2 ( 3 + 3 1 ) + 0 + ( 1) = 0 (36) 3-10 1.13 15) 21

TeV ( 1.1 ) m t /m u 10 8 m t /m(ν τ ) 10 15 16) 17) 2) 3) ( ) 18) 3 10 6 ( ) 19) 1.14 MNS CP 22

(LHC ILC * 8 ) SUSY [1] Review of Particle Physics: Phys. Lett. B592 (2004) 1-1110 [2] H.Fritzsch and Z.Xing: Prog.Part.Nucl.Phys. 45 (2000) 1-81, hep-ph/9912358 [3] S:King: Rept.Prog.Phys. 67 (2004) 107-158, hep-ph/0310204 [4] I.I. Rabi, 1937. Cited in e.g. R.N. Cahn and G. Goldhaber: The Experimental Foundations of Particle Physics. Cambridge University Press (1989) p.52. [5] C.D.Anderson and S.H.Neddermeyer: Phys. Rev. 51 (1937) 884 [6] G.Araki and S.Tomonaga: Phys. Rev. 58 (1940)90 [7] M.Conversi, E.Pancini, and O.Piccioni: Phys. Rev. 71 (1947) 209 [8] G.D.Rochester and C.C.Butler: Nature 160 (1947)855 [9] G.Danby et al.: Phys. Rev. Lett. 9 (1962) 36 [10] Z.Maki et al.: Prog. Theor. Phys. 23 (1960)1174 [11] Z.Maki,M.Nakagawa and S.Sakata: Prog. Theor. Phys. 28 (1962) 870 [12] D.N. Schramm and M.S. Turner: Rev. Mod. Phys. 70 (1998) 303 [13] MEG: http://meg.icepp.s.u-tokyo.ac.jp/index.html PRISM: http://www-prism.kek.jp/ [14] S.Adler: Phys. Rev., 177(1969), J.Bell and R.Jackiew: Nuovo Cimento, 51A(1969)47 * 8 LHC (Large Hadron Collider) CERN 16 TeV 2007 ILC(International Linear Collider) 1 TeV 23

[15] S.Fredriksson; Proc. of the Fourth Tegernsee Int. Conf. on Particle Physics Beyond the Standard Model, 2004, p. 211, hep-ph/0309213 [16] A.E.Nelson and M.J.Strassler: Phys.Rev. D56 (1997) 4226-4237, hep-ph/9607362 [17] P.H.Frampton, P.Q.Hung and M.Sher: Physics Reports, 330 (2000) 263-348, hepph/9903387 [18] G.L.Kane, S.F.King,I.N.R.Peddie and L.Velasco-Sevilla: hep-ph/0504038 [19] E.Witten; Hertz Lectures, Quest for Unification; hep-ph/0207124 24