四変数基本対称式の解放

Similar documents
四変数基本対称式の解放

CVMに基づくNi-Al合金の

第86回日本感染症学会総会学術集会後抄録(I)

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

Ł\”ƒ-2005

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

第90回日本感染症学会学術講演会抄録(I)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

201711grade1ouyou.pdf

Dynkin Serre Weyl

量子力学 問題

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

untitled


プログラム

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

tnbp59-21_Web:P2/ky132379509610002944

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4


パーキンソン病治療ガイドライン2002

研修コーナー

susy.dvi

液晶の物理1:連続体理論(弾性,粘性)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

chap10.dvi

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

量子力学3-2013




July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

第10章 アイソパラメトリック要素

支持力計算法.PDF

(Onsager )

セアラの暗号

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

TOP URL 1

I II III IV V

LLG-R8.Nisus.pdf

陦ィ邏・2

all.dvi

基礎数学I

日本内科学会雑誌第102巻第4号


τ τ

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

nsg04-28/ky208684356100043077

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

, = = 7 6 = 42, =


さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0

B ver B

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

DVIOUT-fujin

gr09.dvi

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

: , 2.0, 3.0, 2.0, (%) ( 2.

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

( )

TOP URL 1


E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

II III II 1 III ( ) [2] [3] [1] 1 1:

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

A

Note.tex 2008/09/19( )

Transcription:

The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe groupe

1. (1 ) f(x) = x 4 + ox 3 + px + qq + r = 0 o, p, q, r C = (x α)(x β)(x γ)(x δ) α, β, γ, δ {ρ C f(ρ) = 0} (1) α + β + γ + δ = o αβ + αγ + αδ + βγ + βδ + γδ = p (1 ) αβγ + αβδ + αγδ + βγδq = q αβγδ = r {o, p, q, r} {α, β, γ, δ} V () V(α, β, γ, δ; A, B, C, D) = Aα + Bβ + Cγ + Dδ () A, B, C, D l 3 (3) l 3 = α + β γ δ (3) l 3 (3) V (4) l 3 = V(α, β, γ, δ; 1,1, 1, 1) (4) V(α, β, γ, δ; 1,1, 1, 1) ψ(α, β, γ, δ) (5) V(α, β, γ, δ; 1,1, 1, 1) = ψ(α, β, γ, δ) (5) l 3 Step1 (6) : l 3 (o, p, q, r) l 3 = 1 Ø 3 + ω 3 3 1 Ø 3 + Ø + ω C 3 1 Ø 3 3 + Ø = α + β γ δ (6) Ø 1 = o Ø = 4f o (6.) Ø 3 = 3Ø C D Ø 4 = Ø 3 4C 3 C = 4f D = o + 3 43 f o 4 3 f 3 o 4 33 4 3 f o (6.3) 4

dd(x) f (x) = dd = 4x3 + 3ox + pp + q f (x) = d f(x) = 1x + 6oo + p dd (6.4) Step Step3 l 3 (6 ) α α β, γ, δ l 3

. Step - Step - l 3 = α + β γ δ ( 1.1.1) o = α + β + γ + δ p = αβ + αγ + αδ + βγ + βδ + γδ ( 1.1.) q = αβγ + αβδ + αγδ + βγδq r = αβγδ Step.1 ( 1.1) l 3 α ( 1.) {l 3 (α + β γ δ)} = 0 ( 1.) groupe (G) α τ n n {1,,3,4,5} l 3 ( 1.3) g = {l 3 τ 1 ψ(α, β, γ, δ)}{l 3 τ ψ(α, β, γ, δ)}{l 3 τ 3 ψ(α, β, γ, δ)}{l 3 τ 4 ψ(α, β, γ, δ)}{l 3 τ 5 ψ(α, β, γ, δ)} ( 1.3) τ 1 = (γδ) τ = (βδ) τ 3 = (βγ) τ 4 = (βγδ) τ 5 = (βδγ) ( ) F (l 3, α, β, γ, δ) = {l 3 ψ(α, β, γ, δ)}g = 0 {l 3 (α + β γ δ)}{l 3 (α + γ δ β)}{l 3 (α + δ β γ)} ( ) {l 3 (α + β δ γ)}{l 3 (α + δ γ β)}{l 3 (α + γ β δ)} = 0 (l 3 l 3 )(l 3 l )(l 3 l 4 )(l 3 l 3 )(l 3 l ){l 3 l 3 } = 0 l 1 l l 3 l 4 = α + β + γ + δ = α β + γ δ = α + β γ δ = α β γ + δ ( 3)

( ) ( 1.1.) ( 4) F (l 3, α, o, p, q) = F (l 3, α) = l 3 3 l 3 (4α + o) + 1 l 3{(4α + o) o } d = 0 ( 4.1) c = 4f o 4 43 f o = l 4 l 3 + l l 4 + l 3 l 4 o = 4f o = l 4 + l 3 + l ( 4.) d = 8f o = l 4 l 3 l 4 F (l 3, α, o, p, q) ( 4) ( ) groupe (G) σ G ( 5) σf (l 3, α, o, p, q) = 0 σ G ( 5) σ 1 σ 7 ( 6) σ 1 = (αβ)(γδ) = βαδγ σ 9 = (αβ) = ( 6) βαγδ ( 7) σ 1F (l 3, α, o, p, q) = F (σ 1 l 3, σ 1 α, σ 1 o, σ 1 p, σ 1 q) = F (l 3, β, o, p, q) = 0 ( 7) σ 9 F (l 3, α, o, p, q) = F (σ 9 l 3, σ 9 α, σ 1 o, σ 1 p, σ 1 q) = F (l 3, β, o, p, q) = 0 α β ξ ( 8) ξ {α, β} ( 8) ( 4.1) ( 1.1.) α β ( 9) f(ξ) = ξ 4 + oξ 3 + pξ + qq + r = 0 F (l 3, ξ) F (l 3, ξ, o, p, q) = l 3 3 l 3 (4ξ + o) + 1 l 3{(4ξ + o) o } d ( 9) = 0

Step. - - ( 9) ξ ξ l 3 ( 9) ξ ( 10) l 3 (4ξ + o) l 3 (4ξ + o) + l 3 3 o l 3 d = 0 ( 10) ξ l 3 ρ (l 3 ) ( 11) ξ = ρ (l 3 ) = 1 o + l 3 ± o l 3 + d l 3 ( 11.1) c = 4f o 4 43 f o 4 o = 4f o ( 11.) 4 d = 8f o

4. Step3 - - Step ( 7) σ 1F(l 3, α) = F(σ 1 l 3, σ 1 α) = F(l 3, β) = 0 ( 7) σ 9 F(l 3, α) = F(σ 9 l 3, σ 7 α) = F(l 3, β) = 0 σ 6 (3 1) σ 6 = (αγ)(βδ) = (3 1) γδαβ ( 7) (3 ) σ 6F(l 3, α) = F(σ 6 l 3, γ) = 0 (3 ) σ 6 F(l 3, β) = F(σ 6 l 3, δ) = 0 γ δ η ( 10) η {γ, δ} (3 3) γ δ (3 4) f(η) = 0 (3 4) F (σ 6 u, η) = 0 γ δ (3 5) η = ρ (σ 8 l 3 ) (3 5) σ 6 u (3 6) σ 6 l 3 = σ 6 ψ(α, β, γ, δ) = ψ(γ, δ, α, β) = α β + γ + δ = l 3 (3 6) η l 3 ρ (x) (3 7) η = ρ ( l 3 ) (3 7)

5. Step Step3 Step1 3 (4 1) { ρ f(ρ) = ρ 4 + oρ 3 + pρ + qρ + r } = { ρ 1 (l 3 ), ρ 1 ( l 3 ), ρ l 3, ρ ( l 3 ) } (4 1) ρ1 (x) = 1 o + x o 4 x + d x (4 1.) ρ (x) = 1 o + x + o 4 x + d x c = 4f o 4 43 f o 4 o = 4f o (4 1..) 4 d = 8f o l 3 = 1 Ø 3 + ω 3 1 3 Ø 3 + Ø + ω C 3 3 1 Ø 3 + Ø ω: ω + ω + 1 = 0 (4 1.3) Ø 1 = o Ø = 4f o (4 1.3.) Ø 3 = 3Ø C D Ø 4 = Ø 3 4C 3 C = 4f D = o + 3 43 f o 4 3 f 3 o 4 33 4 3 f o (4 1.3.3) 4 dd(x) f (x) = dd = 4x3 + 3ox + pp + q (4 1.4) f (x) = d f(x) = 1x + 6oo + p dd

6. l 3 l 3 groupe (G) l 3 = α + β γ δ (6 1) (α + β γ δ), (α β γ + δ), (α β + γ δ), Gl 3 = (6 1) ( α β + γ + δ), ( α + β + γ δ), ( α + β γ + δ) (6 1) (6 ) {l 3 (α + β γ δ)}{l 3 (α β γ + δ)}{l 3 (α β + γ δ)} {l 3 ( α β + γ + δ)}{l 3 ( α + β + γ δ)}{l 3 ( α + β γ + δ)} = 0 (6 ) (6 ) (6 6) {l 3 l 3 }{l 3 l 4 }{l 3 l }{l 3 ( l 3 )}{l 3 ( l 4 )}{l 3 ( l )} = 0 (6 3.1) l 1 = α + β + γ + δ l = α β + γ δ (6 3.) l 3 = α + β γ δ = α β γ + δ l 4 l 3 l 3 l 3 l l 3 l = 0 (6 4) l 6 3 l + l 3 + l l 4 3 + l l 3 + l l 4 + l 3 l l 3 (l l 3 l 4 ) = 0 (6 5) l 3 6 4f o 43 f o l 3 4 + 4f o l 3 8f o = 0 (6 6) l 3 (6 7) l 6 3 o l 4 3 +c l 3 d 3 = 0 (6 7.1) c = 4f o 4 43 f o = l 4 l 3 + l l 4 + l 3 l 4 o = 4f o = l 4 + l 3 + l (6 7.) d = 8f o = l 4 l 3 l 4

7. Step - V v - V v V (7 1) l 1, l, l 3, l (7 ) v (7 3) V = Aα + Bβ + Cγ + Dδ (7 1) l 1 = α + β + γ + δ = o l = α β + γ δ (7 ) l 3 = α + β γ δ l 4 = α β γ + δ v = α + iβ γ iδ (7 3) (7 4) V = Aα + Bβ + Cγ + Dδ = 1 (A + B + C + D)(α + β + γ + δ) + 1 (A B + C D)(α β + γ δ) 4 4 + 1 (A ib C + id)(α + iβ + γ iδ) + 1 (A + ib C id)(α iβ + γ + iδ) 4 4 = 1 (a 4 1l 1 + a l + a 4 v + a 3 v ) (7 4) a 1 = A + B + C + D a = A B + C D (7 4.1) a 3 = A + ib C id a 4 = A ib C + id v = (1 i)l 3 + i v = α iβ γ + iδ (7 4.) v, v l 3, l (7 5) v = 1 (l 3 + l 4 ) + i (l 3 l 4 ) v = 1 (l 3 + l 4 ) i (l (7 5.1) 3 l 4 ) l 3 = 1 (v + v ) i (v v ) l 4 = 1 (v + v ) + i (7 5.) (v v ) ( 4.) (7 5.) (7 6) c = l l 3 + l l 4 + l 3 l 4 = l (v + v ) (v v ) o = l + l 3 + l 4 = l + (v + v ) d = l l 3 l 4 = l (v + v ) (v v ) + (v v ) + (v + v ) + (v v ) (7 6)

(7 6) (7 4) V, l 1, l, v (7 7) 4V = a 1l 1 + a l + a 4 v + a 3 v o = l 1 c = vv l + (v + v ) = 4f o 4 43 f o o = l + vv = 4f o d = l (v + v ) = 8f o (7 7) (7 7) V, l, v (7 8) 4V ( a 1o + a l + a 4 v + a 3 v ) = 0 l 5 o l 3 + (o + 4v 4 )l 4d v = 0 l 6 o l 4 + c l d = 0 (7 8) v = o l v (7 8) V, l (7 9) o l 4V a 1 o + a l + a 4 v + a 3 = 0 v l 4 + 4v4 + c o l o + 4d v l o d (7 9) = 0 o ( 4v 4 + c + o )l 3 + ( 4o v 4 + 4d v o 3 )l d l + 4o d v = 0

(7 9) l 1 v V (7 10) V = 1 a o l (v) 4 1o + a l (v) + a 4 v + a 3 v (7 10.1) = l (v) l μ 1 (x)λ (x)λ 3 (x) μ (x)λ 1 (x)λ 3 (x) + μ 4 (x)λ 1 (x) l (x) = μ 1 (x)λ 1 (x)λ 3 (x) μ 1 (x)λ (x) + μ (x)λ 1 (x)λ (x) μ 3 λ (7 10..1) 1 (x) λ 1 (x) = 4x4 + c o μ o 1 (x) + μ (x) μ 1 (x)μ 3 (x) λ (x) = 4d x μ o 1 (x) + μ (x)μ 3 (x) μ 1 (x)μ 4 (x) (7 10..) λ 3 (x) = d μ o 1 (x) + μ (x)μ 4 (x) μ 1(x) = 4x 4 + c + o μ (x) = 4o x 4 + 4d x o 3 (7 10.3.1) μ 3 (x) = d μ 4 (x) = 4o d x c = 4f o 4 43 f o 4 o = 4f o (7 10.3.) 4 d = 8f o

8. Step1.3 - - groupe (G) αβγδ, βαδγ, γδαβ, δγβα, αγδβ, γαβδ, (G) δβαγ, βδγα, αδβγ, δαγβ, βγαδ, γβδα, αβδγ, βαγδ, δγαβ, γδβα, αδγβ, αβγδ, αγδβ, αδβγ, δαβγ, βαδγ, γαβδ, δαγβ, G γβαδ, γδαβ, δβαγ, βγαδ, βγδα, δγβα, βδγα, γβδα; αγβδ, γαδβ, βδαγ, δβγα; Fig. 1 αβγδ = σ 1, αγδβ = σ 5, αδβγ = σ 9, βαδγ = σ, γαβδ = σ 6, δαγβ = σ 10, γδαβ = σ 3, δβαγ = σ 7, βγαδ = σ 11, δγβα = σ 4, βδγα = σ 8, G γβδα = σ 1 G Fig. groupe G v = φ(α, β, γ, δ) 1 θ (8 1) = σ i v σ j v σ k vσ l v σ m v σ n v (8 1) θ σ i, σ j, σ k σ l, σ m, σ n G i<j<k<l<m<n Θ (8 ) Θ = θ τ 1 θ = 4 11 5 Δ (8.1) Δ = {(α β)(α γ)(α δ)(β γ)(γ δ)(δ β)} (8.) τ 1 = (γδ)

Reference Évariste Galois Mémoire sur les conditions de résolubilité des équations par radicaux Internet Archive http://archive.org/details/uvresmathmatiqu00frangoog 00 pp33 50