Similar documents
T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

GJG160842_O.QXD

TOP URL 1


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

meiji_resume_1.PDF

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

keisoku01.dvi

201711grade1ouyou.pdf


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

PDF

Nosé Hoover 1.2 ( 1) (a) (b) 1:

PowerPoint プレゼンテーション

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

nsg02-13/ky045059301600033210

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

構造と連続体の力学基礎

Note.tex 2008/09/19( )

ver.1 / c /(13)

The Physics of Atmospheres CAPTER :


薄膜結晶成長の基礎3.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

QMII_10.dvi

pdf



1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

I ( ) 2019

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

( ) ) AGD 2) 7) 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

A

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

液晶の物理1:連続体理論(弾性,粘性)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

KENZOU

H.Haken Synergetics 2nd (1978)

[2] 2, 3 ( wrapfigure ) 2: 3: [3] [1] (1841). [2] (1886). [3] -.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

CH, CH2, CH3êLèkä¥éÛó¶.pdf

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

ohpr.dvi

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Morse ( ) 2014

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

untitled

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

1 Tokyo Daily Rainfall (mm) Days (mm)

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Phase field法を用いた材料組織形成過程の計算機シミュレ-ション

Transcription:

( ) 1 1.1?

( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g

500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g

T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1) T 0 = 0 exp[a/t ] exp [ E/k B T ] 1.2?? T K

exp [A/T ] (1.1) [2] [2] [3]

( ) Soft Glassy Materials RNA [4] [5] ( ) [6] ( )

[7] [8, 9] ( ) 2 τ exp[a/t ] T = T c

E = σr 2 G (2.2) R ( ) σ G = G crystal G liq (Gibbs) G R 3 R R 2 R 3 R 2.1(a) ρ(r) ( S(k) ) S(k) 20 2.1(b) [11] (dynamic heterogeneneities)

[11,12] 3 3.1 Adam-Gibbs [13] (mode-coupling theory, MCT)

T = 0 1.1 T = 0 exp[b/t 2 ] 4 (RFOT) (MCT) RFOT MCT (MCT) MCT MCT 1950 [17] MCT

MCT [18] 1980 Kirkpatrick MCT MCT [19] MCT ρ m v ρ m = (ρ m v) t ρ m v t + (ρ m vv) = p + η 2 v + (ζ + 13 η ) v (4.1) p η ζ ρ m ρ m v ρ = ρ m /m δρ (4.1) 2 δρ k t 2 = c 2 k 2 δρ k Γk 2 δρ k t (4.2) ρ 0 Γ = (ζ + 4η/3)/ρ m c = 1/ ρ 0 χ χ = V 1 ( V/ p) T δρ k e zt (4.2) z = ± c 2 k 2 + Γ 2 k 4 /4 Γk 2 /2 (4.3)

k k 2 z ±ick 1 2 Γk2 k (4.3) k (4.2) δρ k t = c2 k 2 Γk 2 δρ k (4.4) ( k 2 ) Γ Γ(k) Γ(k) k 2 Γk 2 Γk 2 = ζ c c(k) k c(k) χ 12 [10] N 1 N 2 = ρ 0 k B T χ N (2.1) N ρ 0 k B T χ = dr δρ(r)δρ(0) (4.5) 2.1(a) S(k) (4.5) c 2 ρ 0 k B T χ = lim k 0 S(k) (4.6) c 2 k BT S(k) (4.4) (4.7) δρ k t = Dk2 S(k) δρ k (4.8) D = k B T/ζ (4.8) S(k) S(k) 2.1(a)

de Genne Narrowing (4.8) (4.8) δρ k t = Dk2 S(k) δρ k D dq k qc(k q)δρ k q δρ q (4.9) c(k) [20] dx dt = µx + 1 2 Vx2 (4.10) C(t) = x(t)x(0) x(0) C(t) = µc(t) + 1 t 2 VC 2,1(t) (4.11) C 2,1 (t) x 2 (t)x(0) 3 x(t) C 2,1 (t) = C 1,2 (t) x(t)x 2 (0) C 1,2 (t) C 1,2 (t) t = µc 1,2 (t) + 1 2 VC 2,2(t) (4.12) C 2,2 (t) = x 2 (t)x 2 (0) 4 (4.12) C 2,1 (t) = t 0 dt e µ(t t ) 1 2 VC 2,2(t ) = t 0 dt 1 2 VC 2,2(t t )C (0) (t ) (4.13) C (0) (t) = e µt 0 C(t) (4.11) C(t) t = µc(t) + 1 4 t 0 dt V 2 C 2,2 (t t )C (0) (t ) (4.14)

5.1 3 3 p = 3 [21] H = N J ijk S i S j S k (5.1) ijk S i (i = 1,, N) J ijk S i N Si 2 = N (5.2) i N 1 i S i q = 1 S i 2 (5.3) N (overlap) J ijk ( ) i F = k B T ln Z (5.4) Z J ijk ln x = lim n 0 x n 1 n (5.5) n n 0 J ijk n q = 0 q q 0 = 0 q 1 ( 0)

T K S c S c 1 1.1(a) S c 3 ( [22] 4 ) 5.2 3 3 S i t = µs i H S i + f i (5.6) f i f i (t)f i (t ) = 2k B T δ(t t ) [21] µ (5.2) (5.1) S i t = µs i jk J ijk S j S k + f i (5.7) (4.10) C(t) = N 1 i S i(t)s i (0) dc(t) dt = µc(t) + 3J 2 2k B T t 0 dt C 2 (t t ) dc(t ) dt (5.8) (4.16) 4.1 T d T d

(2.2) E = σr θ s c R 3 (5.9) s c S c /N θ E R R = (σ/s c ) 1/(d θ) R E τ exp [ E /T ] E [ ] s c R s θ/(d θ) c τ exp s c T = T K As θ/(d θ) c s c a(t T K ) θ = d/2 [ ] A τ exp T T K (1.1) (5.10) 4 T d ( ) T d ( T K ( ) R

6? 4 5 5 3 3 ( ) ( ) 64% [23]

1RSB [24] [1] C. A. Angell, J. Non-Cryst. Solids 102, 205 (1988). [2], (, 2005). [3], ( ). [4] D. Goodsell, http://mgl.scripps.edu/people/goodsell/. [5] R. J. Ellis and A. P. Minton, Nature 425, 27 (2003). [6] T. E. Angelini et al., Proc. Nat. Acad. Sci., 108, 4714 (2011). [7] A. Vespignani, Nature 464, 984 (2010). [8],, 94, 137 (2010). [9] M. Mézard and A. Montanari, Information, Physics, and Computation (Oxford, 2009). [10],, ( ). [11] E. R. Weeks, et. al. Science 287, 627 (2000). [12] R. Yamamoto and A. Onuki, Phys. Rev. E 58, 3515 (1998). [13] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965). [14] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).

[15] G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005). [16] F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003). [17],, 153 (1996). [18] W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford, 2009). [19] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388 (1987). [20] J. P. Hansen and I. R. McDonald, Theory of simple liquids, (Academic Press, 1986). [21] T. Castellani and A. Cavagna, J. Stat. Mech., P05012 (2005).. [22] P. G. Wolynes and V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications (Wiley, 2012). [23] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010). [24] P. Charbonneau et al., Nature Comm. 5, 3725 (2014).