CH, CH2, CH3êLèkä¥éÛó¶.pdf

Size: px
Start display at page:

Download "CH, CH2, CH3êLèkä¥éÛó¶.pdf"

Transcription

1 CH CH CH 3 CH SFG 1 1 SFG SFG GF 8 4 CH 3 C 3v 31 CH CH c CH c µ c α c α cc a b CH α aa = α bb α aa = r α cc µ c α cc α aa CH r CH 1 ( µ c / r CH ) 0 ( α/ r CH ) 0 β 0 = ( α cc / r CH ) 0 ( µ c / r CH ) 0 rβ 0 = ( α aa / r CH ) 0 ( µ c / r CH ) 0 (0.1a) (0.1b) CH CH 3 CH (1) CH HCH high-frequency isolation () 1 CH CH SFG CH CH CH c β ccc = G CH β 0 (Q CH ) v+1,v β aac = β bbc = G CH rβ 0 (Q CH ) v+1,v (0.) G CH = 1 m C + 1 m H = m C + m H m C m H (Q CH ) v+1,v [< v + 1 Q CH v >] = h v + 1 πcω CH CH - 1

2 r = α aa /α cc, (c.f., depolarization ratio ρ = (1 + r 1 r ) ) vinyl-ch CH CH HCH C H c HCH a c HCH HCH α a 1 (1 + r) + (1 r) cosα β ccc = G a1 [ cos(α /)]β 0 (Q a1 ) v+1,v (1 + r) (1 r) cosα β aac = G a1 [ cos(α / )]β 0 (Q a1 ) v+1,v (0.3) β bbc = G a1 [r cos(α /)]β 0 (Q a1 ) v+1,v G a1 = 1+ cosα m C + 1 m H = m C + m H (1+ cosα) m C m H =(3m C + m H )/(3m C m H ) = 1 m H m C for methylene group (α = ), (m C + m H )/(m C m H ) = 1 m H m C for vinyl CH (α = 10 ). (Q a1 ) v+1,v [< v + 1 Q a1 v >] = h πcω a1 (v + 1) (c.f., depolarization ratio ρ = b r 1 r ) β caa = G b1 [ 1 r sinα sin(α /)]β 0(Q b1 ) v+1,v β aca = G b1 [ 1 r (0.4) sinα sin(α /)]β (Q 0 b1 ) v+1,v G b1 = 1 cosα + 1 = m C + m H (1 cosα ) w m C m H m C m H =(3m C + 4m H )/(3m C m H ) = 1 m H m C for methylene group (α = ), (m C + 3m H )/(m C m H ) = 1 m H m C for vinyl CH (α = 10 ). (Q b1 ) v+1,v [< v + 1 Q b1 v >] = h πcω b1 (v + 1) IR (dµ a1 /dr CH ) /(dµ b1/dr CH ) G a1 cos (α/)/g b1 sin (α/) Raman CH -

3 I a1 /I b1 G a1 [30(1 + r) + 7(1 - r) ]/[14G b1 (1 - r) ] (1 + r) /(1 - r) CH 3 C 3 C H 3 c 3 HCX a b HCX HCX τ a 1 β ccc = 3G sym [ r + (1 r) cos τ β aac = β bbc = 3G sym [ r + (1 r)sin τ G sym = cosτ ]β 0 (Q a1 ) v+1,v cosτ ]β 0 (Q a1 ) v+1,v (0.5) 1+ cosτ m C + 1 m H = m C + m H (1 + cosτ ) m C m H = 1 m H (Q sym ) v+1,v [< v + 1 Q sym v >] = (Q sym ) v,v+1 [< v Q sym v + 1 >] = (c.f., depolarization ratio ρ = 3 4 h πcω sym (v + 1) r 1 r ) 1 m C e β caa = β cbb = β aca = β bcb = 3G deg [ 1 r sin τ cosτ ]β 0 (Q deg ) v+1,v β aaa = β bba = β abb = β bab = 3 G deg [1 r sin3 τ ]β 0 (Q deg ) v+1,v (0.6) G deg = 1 cosτ m C + 1 m H = m C + m H (1 cosτ ) m C m H = 1 m H (Q deg ) v+1,v [ < v + 1 Q deg v >] = (Q deg ) v 1,v [< v 1 Q deg v >] = 1 m C h πcω deg (v + 1)(v + ) h πcω deg v(v +1) l v + 1 v v = 1 v v + 1 E = A 1 + E (v = ), E 3 = E (v = 3) IR (dµ sym /dr CH ) /(dµ deg /dr CH ) G sym cos τ/g deg sin τ Raman I sym /I deg G sym [15(1 + r) + (1/4)(1 - r) (1-3cos τ) ]/[(63/)G deg (1 - r) sin τ(1 + 3cos τ)] (1 + r) /(1 - r) (v = 1-0) η vib = β 0 (Q vib ) 1,0 CH - 3

4 η sym = β 0 (Q sym ) 1,0 η deg = β 0 (Q deg ) 1,0 = ω sym /ω deg 1.95 η sym η a1 = β 0 (Q a1 ) 1,0 = ω sym /ω a η sym η b1 = β 0 (Q b1 ) 1,0 = ω sym /ω b η sym SFG β aac β aac * CH 3 CH β aac = β aac * β aac = β aac * β ccc = 0.5 β aac * β ccc = β aac * β aaa = 1.49 β aac * β aaa = β aac * β caa = β aac * β caa = β aac * =CH CH CH β aac β + aac CH CH C=C c a =CH CH β aac = β aac + β ccc = 0.33 β aac + β aaa = β caa = 1.04 β aac + + β aac = β aac + β acc = β cac = β cca = β aac + β ccc = β aac + β aaa = β aac + β aca = β caa = β aac 1 SFG CH (dµ/dr) 0 r = µ CH r (dα/dr) 0 r = a 0 r r CH c (mass adjusted) HCH HCC CC CO potential energy distribution = PES CH CH 3 CH CH CH [(dq/dt) + λq ] Q CH = 1 G CH r CH (1.1) CH - 4

5 G CH G CH = (m C + m H )/m C m H = 1/m H + 1/m C (1.) V K V = K( r) = KG CH Q CH (1.3) F CH = K λ CH = F CH G CH [ν (cm -1 ) = (λ CH )/πc] CH CH r 1 r Q a1 Q b1 Q a1 = r 1 + r 1 G a1 (1.4a) Q b1 = r 1 r 1 G b1 (1.4b) G a1 G b1 HCH α G a1 = [m C + m H (1 + cosα)]/m C m H = 1/m H + (1 + cosα)/m C G b1 = [m C + m H (1 - cosα)]/m C m H = 1/m H + (1 - cosα)/m C (1.5a) (1.5b) V T d cosα = -1/3 V = K[( r 1 ) + ( r ) ] + K' r 1 r = (K + K' + 4F/3)G a1 Q a1 + (K - K' - 0.F/3)G b1 Q b1 (1.6) F Shimanouti field H H repulsion term F F '' = -0.1F Td λ a1 = (K + K' + 4F/3)G a1 λ b1 = (K - K' - 0.F/3)G b1 CH 3 3 CH r 1 r r 3 Q sym Q deg,a Q deg,b ac H 1 Q sym = r 1 + r + r G sym (1.7a) Q deg,a = r 1 r r G deg (1.7b) Q deg,b = r r 3 1 G deg (1.7c) G sym = [m C + m H (1 + cosτ)]/m C m H = 1/m H + (1 + cosτ)/m C G deg = [m C + m H (1 - cosτ)]/m C m H = 1/m H + (1 - cosτ)/m C (1.8a) (1.8b) τ HCH T d cosτ = -1/3 CH - 5

6 V V = K[( r 1 ) + ( r ) + ( r 3 ) ] + K'[ r 1 r + r r 3 + r 1 r 3 ] = (K + K' +.03F)G sym Q sym + (K - K' F)G deg Q deg (1.9) λ sym = (K + K' +.03F)G sym λ deg = (K - K' F)G deg CH CH 3 CH CH CH CH CH [h/(4π cω)] 1/ Q µ vib = (dµ CH /dr) 0 ( r) = (dµ CH /dr) 0 G CH Q CH (1.10) CH r 1 r [ r 1 sin(α/), 0, r 1 cos(α/)] [ - r sin(α/), 0, r cos(α/)] Q a1 Q b1 c a e a e c a c µ vib = (dµ CH /dr) 0 ( r 1 + r ) = (dµ CH /dr) 0 [e a ( r 1 - r )sin(α/) + e c ( r 1 + r )cos(α/)] = (dµ CH /dr) 0 [ G a1 cos(α/)q a1 + G b1 sin(α/)q b1 ] (1.11) µ/ Q a1 = (dµ CH /dr) 0 G a1 cos(α/) µ/ Q b1 = (dµ CH /dr) 0 G b1 sin(α/) (1.1) [cos(α/) = 1 /3, sin(α/) = / 3 for methylene] and [cos(α/) = -1/, sin(α/) = 3 / for vinyl CH )] CH 3 µ vib = (dµ CH /dr) 0 ( r 1 + r + r 3 ) = (dµ CH /dr) 0 [e a ( r 1 - r - r 3 )sinτ + e b ( r - r 3 )sinτ + e c ( r 1 + r + r 3 )cosτ] = (dµ CH /dr) 0 3G sym cosτq sym + 6G edeg / sinτ[q deg,a + Q deg,b ]} (1.13) CH - 6

7 µ/ Q sym = (dµ CH /dr) 0 3G sym cosτ µ/ Q deg = (dµ CH /dr) 0 6G edeg / sinτ (1.14) (cosτ = -1/3, sinτ = 8 /3) CH (c ) CH C H ζ ξ η (dα/dr) 0 r = α 0 r (dα ζζ /dr) 0 r = α 0 r (dα ξξ /dr) 0 r = (dα ηη /dr) 0 r = rα 0 r (1.15) CH (ξ, η, ζ) (a, b, c) (1) (E a, E b, E c ) (E ξ, E η, E ζ ) () (P ξ, P η, P ζ ) (3) (P a, P b, P c ) P a E a (4) r i α aa 1 CH C H c a b (a, b, c) (ξ, η, ζ) CH E c E a E b CH P c = (dα zz /dr) 0 re c = a 0 E c r = a 0 G CH Q CH E c P a = (dα xx /dr) 0 re a = ra 0 E a r = ra 0 G CH Q CH E a P b = (dα hh /dr) 0 re b = ra 0 E b r = ra 0 G CH Q CH E b a 0 = (dα zz /dr) 0 ζ ξ H (a) (1.1) Q CH = (1/ G CH ) r (c) α C ξ 1 H 1 CH - 7 ζ 1

8 α cc = a 0 G CH Q CH α aa = α bb = ra 0 G CH Q CH (1.16) CH CH HCH ξζ η CH HCH α C H c HCH H 1 H a E a E b E c CH ξ η ζ E ξ (1) = E a cosα/ + E c sinα/ E η (1) = E b E ζ (1) = -E a sinα/ + E c cosα/ E ξ () = E a cosα/ - E c sinα/ E η () = E b E ζ () = E a sinα/ + E c cosα/ (1.17) CH(1) CH() P ξ (1) = (dα ξξ /dr) 0 r 1 E ξ (1) = ra 0 r 1 E ξ (1), P η (1) = (dα ηη /dr) 0 r 1 E η (1) = ra 0 r 1 E η (1), P ζ (1) = (dα ζζ /dr) 0 r 1 E ζ (1) = a 0 r 1 E ζ (1), P ξ () = (dα ξξ /dr) 0 r E ξ () = ra 0 r E ξ (), P η () = (dα ηη /dr) 0 r E η () = ra 0 r E η (), P ζ () = (dα ζζ /dr) 0 r E ζ () = a 0 r E ζ () (1.18) CH(1) CH() (ξ, η, ζ) (a, b, c) η α/ CH(1) CH() (a, b, c) P a = P ξ (1)cosα/ + P ξ ()cosα/ - P ζ (1)sinα/ + P ζ ()sinα/ P b = P η (1) + P η () P c = P ξ (1)sinα/ - P ξ ()sinα/ + P ζ (1)cosα/ + P ζ ()cosα/ (1.9) (1.17) (1.18) P a = a o {[(1 - cosα) + r(1 + cosα)]( r 1 + r )/ E a [(1 - r)sinα]( r 1 - r )/ E c } P b = ra o ( r 1 + r )E b P c = a o {[(1 + cosα) + r(1 - cosα)]( r 1 + r )/E c [(1 - r)sinα]( r 1 - r )/ E a } (1.0) (1.4) CH - 8

9 P a = a o {[(1 - cosα) + r(1 + cosα)] G a1 Q a1 E a [(1 - r)sinα] G b1 Q b1 E c } P b = ra o (G a1 )Q a1 E b P c = a o {[(1 + cosα) + r(1 - cosα)] G a1 Q a1 E c [(1 - r)sinα] G b1 Q b1 E a } (1.1) a 1 α aa = a o [(1 - cosα) + r(1 + cosα)] G a1 Q a1 α bb = ra o (G a1 )Q a1 α cc = a o [(1 + cosα) + r(1 - cosα) G a1 Q a1 (1.) b 1 α a c = a o [(1 - r)sinα] G b1 Q b1 α ca = a o [(1 - r)sinα] G b1 Q b1 (1.3) CH(1) CH() (ξ, η, ξ) (a,b,c) b -α/ +α/ b φ c' θ b" χ (a, b, c) (a", b", c") (χ, θ, φ) (0, -α/, 0) (0, +α/, 0) (ξ, η, ξ) (a,b,c) (0, +α/, 0) (0, -α/, 0) V (V a, V b, V c ) (V ξ, V η, V ζ ) V ξ V η V ζ [CH(1)] cos(α / ) 0 sin(α /) = sin(α / ) 0 cos(α / ) V a V b V c V ξ V η V ζ [CH()] cos(α /) 0 - sin(α / ) = sin(α / ) 0 cos(α / ) V a V b V c (1.4a) V a V b V c cos(α / ) 0 - sin(α /) = sin(α /) 0 cos(α / ) V ξ V η V ζ V a V b V c cos(α / ) 0 sin(α / ) = sin(α / ) 0 cos(α /) V ξ V η V ζ (1.4b) (1.4a) (1.4b) V ξ (1) = U(-α/)V a, V ξ () = U(+α/)V a (1.5a) V a = U(+α/)V ξ (1), V a = U(-α/)V ξ () (1.5b) (1.17) ~ (1.1) (1.17) E ξ (1) = U(-α/)E a, E ξ () = U(+α/)E a (1.6) (1.18) (dα ξξ /dr) 0 r 1 (dα ξξ /dr) 0 r α ξξ CH - 9

10 P ξ (1,) = P ξ (1,) α ξξ 0 0 E P η (1,) = ξ (1,) 0 α ηη 0 E η (1,) P ζ (1,) 0 0 α ζζ E ζ (1,) = α ξ E ξ (1,) (1.7) CH (a, b, c) (1.19) P a (1,) = U(±α/)P ξ (1,) = U(±α/) α ξ E ξ (1,) (1.6) P a (1) = U(+α/)α ξ U(-α/)E a (1) P a () = U(-α/)α ξ U(+α/)E a () (1.8) U(+α/)α ξ U(-α/) U(-α/)α ξ U(+α/) CH(1) CH() α ξ α a (1.4a) (1.4b) α aa (1,) = [(5cosα + 7)/1]α ξξ + [(cosα - 1)/1]α ηη - [(cosα - 1)/]α ζζ α bb (1,) = [( -cosα + 1)/1]α ξξ + [(cosα + 11)/1]α ηη α cc (1,) = -[(cosα - 1)/3]α ξξ - [(cosα - 1)/6]α ηη + [(cosα + 1)/]α ζζ α ca (1) = α ac (1) = -α ca () = -α ac () = (sinα/)(α ζζ - α ξξ ) P a (1) P a () CH r 1 r (1.15) α aa = {[(5cosα + 7)/1]α ξξ + [(cosα - 1)/1]α ηη - [(cosα - 1)/]α ζζ }[ r 1 + r ] = a 0 [r(cosα + 1)/ - (cosα - 1)/][ r 1 + r ] α bb = {[(-cosα + 1)/1]α ξξ + [(cosα +11)/1]α ηη }[ r 1 + r ] = a 0 r[ r 1 + r ] α cc = { -[(cosα - 1)/3]α ξξ - [(cosα - 1)/6]α ηη + [(cosα + 1)/]α ζζ }[ r 1 + r ] = a 0 [ -r(cosα - 1)/ + (cosα + 1)/][ r 1 + r ] α ca = α ac = (sinα/)(α ζζ - α ξξ )[ r 1 - r ] = a 0 [(1 - r)sinα/][ r 1 - r ] (1.) CH 3 C 3 CH(1) ξζ CH ξ CH η 10 c C 3 C H 3 a XCH(1) C 3 H 1 C CH - 10

11 H(1) H() H(3) CH(1) CH() CH(3) (ξ, η, ζ) (a,b,c) (0, π + τ, 0) (0, π + τ, π/3) (0, π + τ, -π/3) (ξ, η, ζ) (a,b,c) (0, π - τ, 0) (-π/3, π - τ, 0) (π/3, π - τ, 0) (CH(1)) (ξ, η, ζ) (a,b,c) -cosτ 0 sinτ U(0, π + τ, 0) = sinτ 0 -cosτ (1.9a) (ξ, η, ζ) (a,b,c) -cosτ 0 -sinτ U 1 (0, π + τ, 0) = U(0, π τ, 0) = sinτ 0 -cosτ (1.30a) (CH()) (ξ, η, ζ) (a,b,c) -cosτ 0 sinτ -1 / - 3 / 0 U(0, π + τ, - π /3) = / -1 / 0 - sinτ 0 -cosτ /cosτ 3 / cosτ sinτ = 3 / -1 / 0 1 /sinτ 3 / sinτ -cosτ (1.9b) (ξ, η, ζ) (a,b,c) -1 / 3 / 0 -cosτ 0 -sinτ U 1 (0, π + τ, - π /3) = U (π / 3, π τ, 0) = - 3 / -1 / sinτ 0 -cosτ 1/ cosτ 3 / 1/ sinτ = 3 /cosτ -1 / 3 / sinτ sinτ 0 -cosτ (1.30b) (CH(3)) (ξ, η, ζ) (a,b,c) CH - 11

12 -1 / 3 / 0 -cosτ 0 sinτ U(0, π + τ, π / 3) = - 3 / -1 / sinτ 0 -cosτ 1/ cosτ - 3 / -1 / sinτ = 3 /sinτ -1 / - 3 / sinτ -sinτ 0 -cosτ (1.9c) (ξ, η, ζ) (a,b,c) -1 / - 3 / 0 -cosτ 0 -sinτ U 1 (0, π + τ, π / 3) = U( π / 3, π τ, 0) = 3 / -1 / sinτ 0 -cosτ 1 /cosτ - 3 / 1/ sinτ = - 3 /cosτ -1 / - 3 / sinτ sinτ 0 -cosτ (1.30c) α a = U -1 α ξ U (CH(1)) α ξξ cos τ + α ζζ sin τ 0 ( α ξξ + α ζζ )sinτ cosτ α a (1)= 0 α ηη 0 ( α ξξ + α ζζ ) sinτ cosτ 0 α ξξ sin τ + α ζζ cos τ (1.31a) (CH()) α a ()= 1 4 α ξξ cos τ + 3α ηη + α ζζ sin τ 3(α ξξ cos τ α ηη + α ζζ sin τ ) (α ξξ α ζζ )sinτ cosτ 3(α ξξ cos τ α ηη + α ζζ sin τ ) 3α ξξ cos τ + α ηη + 3α ζζ sin τ 3(α ξξ α ζζ ) sinτ cosτ (α ξξ α ζζ )sin τ cosτ 3(α ξξ α ζζ ) sinτ cosτ α ξξ sin τ + α ζζ cos τ (CH(3)) α a (3)= 1 4 (1.31b) α ξξ cos τ + 3α ηη + α ζζ sin τ 3(α ξξ cos τ α ηη + α ζζ sin τ ) (α ξξ α ζζ )sinτ cosτ 3(α ξξ cos τ α ηη + α ζζ sin τ ) 3α ξξ cos τ + α ηη + 3α ζζ sin τ 3(α ξξ α ζζ ) sinτ cosτ (α ξξ α ζζ )sin τ cosτ 3(α ξξ α ζζ ) sinτ cosτ α ξξ sin τ + α ζζ cos τ (1.31c) CH α aa = (1/)[α ξξ cos τ + α ηη + α ζζ sin τ][ r 1 + r + r 3 ] + (1/4)(α ξξ cos τ - α ηη + α ζζ sin τ)[ r 1 - r - r 3 ] CH - 1

13 α bb = (1/)[α ξξ cos τ + α ηη + α ζζ sin τ][ r 1 + r + r 3 ] - (1/4)(α ξξ cos τ - α ηη + α ζζ sin τ)[ r 1 - r - r 3 ] α cc = [α ξξ sin τ + α ζζ cos τ][ r 1 + r + r 3 ] α ab = α ba = ( 3/4)(α ξξ cos τ - α ηη + α ζζ sin τ)[ r - r 3 ] α bc = α cb = ( 3/)(α ξξ - α ζζ )sinτcosτ[ r - r 3 ] α ac = α ca = (-1/)(α ξξ - α ζζ )sinτcosτ[ r 1 - r - r 3 ] (1.3) (1.7) α aa = ( 3/)[α ξξ cos τ + α ηη + α ζζ sin τ] G sym Q sym + ( 6/4)(α ξξ cos τ - α ηη + α ζζ sin τ) G deb Q deg,a α bb = ( 3/)[α ξξ cos τ + α ηη + α ζζ sin τ] G sym Q sym - ( 6/4)(α ξξ cos τ - α ηη + α ζζ sin τ) G deb Q deg,a α cc = 3[α ξξ sin τ + α ζζ cos τ] G sym Q sym α ab = α ba = ( 6/4)(α ξξ cos τ - α ηη + α ζζ sin τ) G deb Q deg,b α bc = α cb = ( 6/)(α ξξ - α ζζ )sinτcosτ G deb Q deg,b α ac = α ca = (- 6/)(α ξξ - α ζζ )sinτcosτ G deb Q deg,a (1.33) CH α ξξ = α ηη = rα ζζ (dα ζζ /dr) 0 = a 0 α aa = a 0 {( 3/)[(1 - cos τ) + r(1 + cos τ)] G sym Q sym + ( 6/4)(1 - cos τ)(1 - r) G deb Q deg,a } α bb = a 0 {( 3/) [(1 - cos τ) + r(1 + cos τ)] G sym Q sym - ( 6/4)(1 - cos τ)(1 - r) G deb Q deg,a } α cc = a 0 { 3[cos τ + r(1 - cos τ)] G sym Q sym } α ab = α ba = a 0 {( 6/4)(1 - cos τ)(1 - r) G deb Q deg,b } α bc = α cb = a 0 {(- 6/)(1 - r)sinτcosτ G deb Q deg,b } α ac = α ca = a 0 {( 6/)(1 - r)sinτcosτ G deb Q deg,a } (1.34) SFG SFG β ijk = α ij µ k (1.35) b 0 = (dα ζζ /dr) 0 (dµ CH /dr) o CH β aac = β bbc = rb 0 G CH Q CH β ccc = b 0 G CH Q CH (1.36a) (1.36b) CH (1.11) 3 Q a1 c a 1 (1-35) k c Q b1 CH - 13

14 a b 1 (1.35) k a a 1 β aac = b 0 [(1 - cosα) + r(1 + cosα)]cosα/ G a1 Q a1 β bbc = rb 0 cosα/ G a1 Q a1 β ccc = b 0 [(1 + cosα) + r(1 - cosα)]cosα/ G a1 Q a1 (1.37a) (1.37b) (1.37c) b 1 β aca = β caa = -b 0 (1 - r)sinα/sinα G b1 Q b1 (1.38) CH 3 (1.13) 3 Q sym c Q deg,a Q deg,b a b a 1 β aac = β bbc = b 0 (3/)[(1 - cos τ) + r(1 + cos τ)]cosτg sym Q sym β ccc = b 0 (3)[cos τ + r(1 - cos τ)]cosτg sym Q sym e β aaa = -β bba = b 0 (3/4)(1 - cos τ)sinτ(1 - r)g deg Q deg,a β caa = β aca = -b 0 (3/)(1 - r)sin τcosτg deb Q deg,a β abb = β bab = -b 0 (3/4)(1 - cos τ)sinτ(1 - r)g deg Q deg,b β bcb = β cbb = -b 0 (3/)(1 - r)sin τcosτg deb Q deg,b (1.39a) (1.39b) (1.40a) (1.40b) (1.40c) (1.40d) CH SFG α ξξ α ηη q Q q = (λ /h ) 1/4 Q, q = (πcω /h)q (Q sym ) v+1,v [< v + 1 Q sym v >] = (Q sym ) v,v+1 [< v Q sym v + 1 >] = h 4πcω sym (v + 1) (.1) CH - 14

15 (Q deg ) v+1,v [ < v + 1 Q deg v >] = (Q deg ) v 1,v [< v 1 Q deg v >] = h 8πcω deg (v + 1)(v + ) h 8πcω deg (v + 1)v (.) (1.4) (1) l l = v, v -, v - 4, 1 or 0,, -(v - ), -v q deg,a q deg,b <v + 1, l - 1 q deg,a v, l> = <v, l q deg,a v + 1, l - 1> = (1/) [(v - l + )/] <v + 1, l - 1 q deg,b v, l> = -<v, l q deg,b v + 1, l - 1> = (i/) [(v - l + )/] <v + 1, l + 1 q deg,a v, l> = <v, l q deg,a v + 1, l + 1> = (-1/) [(v + l + )/] <v + 1, l + 1 q deg,b v, l> = -<v, l q deg,b v + 1, l + 1> = (i/) [(v + l + )/] v l v + 1 l <v + 1 q deg,a v><v q deg,a v + 1> = <v + 1 q deg,b v><v q deg,b v + 1> = (1/4)[(v - l + )/ + (v + l + )/] = (v + )/4 <v - 1 q deg,a v><v q deg,a v - 1> = <v - 1 q deg,b v><v q deg,b v - 1> = (1/4)[(v - l)/ + (v + l)/] = v/4 (.) l v + 1 SFG q deg,a q deg,b () l cm -1 l v + 1 (1-4) (1) "high-frequency isolation" CH CH () CH CH (3) CH 1 C CH 1 CH G D 13 C CH - 15

16 Avogadro constant: , m H = kg/mol = kg, 1/m H = kg -1 m D = kg/mol = 3.345x10-7 kg, 1/m D = kg -1 m C = kg/mol=19.97x10-7 kg, 1/m C = kg -1 m 13C = kg/mol=1.593x10-7 kg, 1/m H = kg -1 CH 3 G sym = m + m C H (1 + cosτ ) = m C m H m H 3m C = (3.157) [6.13, (3.144)] 10 6 kg -1 G deg = m C + m H (1 cosτ ) m C m H = 1 m H + 4 3m C = (3.659) [6.595, (3.607)] 10 6 kg -1 (.3) CH ( ) G a1 = m + m C H (1+ cosτ ) = 1 + m C m H m H 3m C = 6.31 (3.34) [6.86, (3.98)] 10 6 kg -1 G b1 = m C + m H (1 cosτ ) m C m H = 1 m H + 4 3m C = (3.659) [6.595, (3.607)] 10 6 kg -1 (.4) CH ( ) G a1 = m + m C H (1+ cosα ) = m C m H m H m C = 6.8 (3.41) [6.09, (3.1)] 10 6 kg -1 G b1 = m C + m H (1 cosα) m C m H = 1 m H + 3 m C = (3.743) [6.67, (3.684)] 10 6 kg -1 (.5) CH G CH = m C + m H m C m H = 1 m H + 1 m C = (3.49) [6.440, (3.453)] 10 6 kg -1 (.6) 3-1 (1) F CH - 16

17 CH 3 F sym = K CH + k + F - F'/3 F deg = K CH - k + F'/3 (3.1) CH (alkyl) F a1 = K CH + k + 4F/3 F b1 = K CH - k + F'/3 (3.) CH (vinyl) F a1 = K CH + k + 3F/ F b1 = K CH - k + F'/ (3.3) CH F CH = K CH (3.4) 3 CH -CH 3 ~ 960, , 853 cm -1, -CH - ~ 930 ~ 850 cm -1 -CH< ~ 890 cm -1 -CH= 3040 ~ 3010 cm -1 CH = 3095 ~ 3075 cm ~ 965 cm -1 CH 3300 cm -1 -CHO 900 ~ 700 cm -1 ( ) CH(aromatic) ~ 3030 cm -1 ((md/å = 10 N/m) K CH = 4. F H H = 0.44 (in (-CH -CH -) n K CH = 4.4 F H H = 0.1 (CH 4 ) K CH = 3.46 (in HC0 - ) K CH = F H H = 0.03 (in CH 3 C0 - ) Urey-Bradley-Shimanouti k = 0 F' = -0.1F R. G. Snyder, J. Chem. Phys. 47, 1316 (1967) n- valence force field ν sym = 870 cm -1 ν deg = 950 cm -1 ν a1 = 845 cm -1 ν b1 = 915 cm -1 K CH = ± F H H = 0.03 ± 0.00 K CH = ± F H H = ± CH CH 3 K CH = F H H = CH K CH = F H H = K CH = 4.6 F H H = 0.03 md/å (CH 3 ) ν sym = 839 cm -1, ν deg = 933 cm -1 (CH ) alkyl ν a1 = 871 cm -1, ν b1 = 933 cm -1 (CH) vinyl ν a1 = 853 cm -1, ν deg = 95 cm -1 (CH) ν CH = 960 cm -1 (a) (b) () CH (dµ/dr CH ) 0 CH, CH CH 3 CH - 17

18 <v + 1, l - 1 q deg,a v, l> (1.10) ~ (1.14) (1.41) (1.4) v = 1-0 CH I CH = (1/)G CH /ω CH (3.5) CH I a1 = G a1 /ω a1 cos α/ = (1/3)G a1 /ω a1 I b1 = G b1 /ω b1 sin α/ = (/3)G b1 /ω b1 I a1 /I b1 ~ (3.6) CH 3 I sym = (3/)G sym /ω sym cos τ = (1/6)G sym /ω sym I deg = (3/4)G deg /ω deg sin τ = (4/3)G deg /ω deg I sym /I deg ~ (3.7) CH =CH I CH /I b1 /I a1 ~ G CH /3G b1 /G a1 ~ 1.0/1.56/ a = (1/3)(α aa + α bb + α cc ) γ = (1/4)[(α aa - α bb - α cc ) + 3(α aa - α bb ) + 3(α ab + α ba ) + 3(α bc + α cb ) + 3(ϖ ca + α ac ) ] (4.1) 90 I par a = (45a + 4γ )/45 I perp = γ /15 (4.) 45a + 7γ I perp /I para ρ ρ = I perp /I para = 3γ /(45a + 4γ ) (4.3) CH - 18

19 0 1/3 a = 0 3/4 45a = 5[α cc + α cc (α aa + α bb ) + (α aa + α bb ) ] γ = α cc - α cc (α aa + α bb ) + (1/4)(α aa + α bb ) + (3/4)(α aa - α bb ) (4.4) 45a + 7γ = 1α cc + 3α cc (α aa + α bb ) + (7/4)(α aa + α bb ) + (1/4)(α aa - α bb ) (4.5a) α ρ = cc α cc (α aa + α bb ) + (α aa + α bb ) α aa α bb α cc + ( /3)α cc (α aa + α bb ) + (α aa + α bb ) + ( /3)α aa α bb (4.5b) (4.5a) (4.5b) CH a = (1/9)a 0 (1 + r) G CH Q CH γ = a 0 (1 - r) G CH Q CH I CH Raman = (3/45)a 0 (4 + r + 9r )G CH Q CH ρ CH = (4.6) 1 5r( + r) (4.7) 3(1 r) CH a 1 mode b 1 mode a = (/9)a 0 (1 + r) G a1 Q a1 γ = (1/4)a 0 (1 - r) (1 + 3cos α)g a1 Q a1 I a1 Raman = (1/6)a 0 [60(1 + r) + 14(1 - r) ]G a1 Q a1 ρ a1 = 1 (1 r) 10 30(1+ r) + 4(1 r) (4.9) a = 0 γ = (3/4)a 0 (1 - r) sin αg b1 Q b1 I b1 Raman = (14/3)a 0 (1 - r) G b1 Q b1 (4.8) (4.10) ρ b1 = 3/4 (4.11) Raman I a1 Raman = G a1 I b1 G b (1+ r) 7(1 r) (4.1) CH 3 symmetric mode a = (1/3)a 0 (1 + r) G sym Q sym γ = (3/4)a 0 (1 - r) (1-3cos τ) G sym Q sym I sym Raman = a 0 [15(1 + r) + (1/4)(1 - r) (1-3cos τ) ]G sym Q sym CH - 19 (4.13) ρ sym = 3 (1 r) 45 45(1 + r) + 4(1 r) (4.14)

20 degenerate mode a = 0 γ = (9/4)a 0 (1 - r) sin τ(1 + 3cos τ)g deg Q deg (4.15) Raman I deg = (63/4)a 0 (1 - r) sin τ(1 + 3cos τ)g deg Q deg ρ deg = 3/4 (4.16) Raman I sym Raman = I deg 63 G sym G deg 15(1+ r) + (1/ 4)(1 r) (1 3cos τ ) (1 r) (1 + 3cos τ ) sin (4.17) τ r CH r (1-61) r = -1.0 ρ = 0.57 r = -0.5 ρ = 0.75 r = 0.0 ρ = 0.33 r = 0.5 ρ = 0.04 r = -0.9 ρ = 0.61 r = -0.4 ρ = 0.73 r = 0.1 ρ = 0.3 r = 0.6 ρ = 0.0 r = -0.8 ρ = 0.66 r = -0.3 ρ = 0.66 r = 0. ρ = 0.16 r = 0.7 ρ = 0.01 r = -0.7 ρ = 0.68 r = -0. ρ = 0.57 r = 0.3 ρ = 0.10 r = 0.8 ρ = r = -0.6 ρ = 0.74 r = -0.1 ρ = 0.38 r = 0.4 ρ = 0.06 r = 0.9 ρ = maximum at r = -0.5, grradual decrease converging to ρ = 0.15 (ρ = 0.5 at r = -3.0). minimum (ρ = 0.00) at r = 1.0, converging to r = 0.15 at infinite r (ρ = 0.05 at r = 3.0). HCOONa(aq) ρ = 0.3 ± 0.04 r = 0.10 ± 0.05 CHCl 3 CHBr 3 CHF 3 CHBrCl ρ ~ 0. HCCl CCl 3 ρ ~ 0.3 r = 0.05 ~ 0.15 CH IR I a1 /I b1 = 0.49 r I a1 /I b1 ρ a1 r I a1 /I b1 ρ a1 r I a1 /I b1 ρ a1 r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = CH - 0

21 (cm -1 ) IR int Raman int ρ r from ρ a1 CH Cl 984 ~ 45 ~ 41 ~ 0.1 ~ ~ 65 ~ 3 ~ 0.8 CH Br 987 ~ 15 ~ < 0.1 ~ ~85 ~ 4 ~ 0.8 CH I 967 ~50 ~ 14 ~ 0. ~ ~90 ~ 0.5 ~ 0.9 CH BrCl 987 w ~ 70 ~ 0.05 ~ w ~ 5 ~ 0.35 CH ClCCN 987 vs ~ 4 < 0.1 ~ vs ~ 35 ~ 0.6 CH 3 IR I sym /I deg = 0.1 r I sym /I deg ρ sym r I sym /I deg ρ sym r I sym /I deg ρ sym r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r r = ~ 0.1 ~ -0. SFG (cm -1 ) IR int Raman int ρ r from ρ a1 M ~ 6 < 0.1 S ~ 1 ~ 0.1 ~ 13 ~ 0.3 S ~ 11 ~ 0.3 ~ 0. CH 3 CH Br CH 3 CHCl CH 3 CHBr CH 3 F CH 3 Cl CH 3 I ~ 5 P ~ 55 < 0.05 ~ ~ 75 ~ 10 ~ 0.7 P ~ 0.5 P ~ 9 ~ 0.05 ~ dp ~ 1.5 P s ~ 6 ~ 0.1 s ~ 41 ~ 0.1 m ~ 7 ~ 0. ~ 9.5 ~ 0.1 s ~ 3.5 ~ ~ 44 < ~ ~ 0.9 CH - 1 ~ 0.16

22 3051 s CH 3 OH 835 ~ 80 ~ ~ 55 ~ 0.1 CH 3 COCl 938 ~ 0.05 CH 3 COBr 93 w ~ 80 < w ~ 55 ~0.75 CH 3 CN 946 ~ 44 < CH 3 COCCl ~ 3 ~ 0.8 ~ 15 < 0.1 ~ 3 ~ 3 r ~ 0.1 r ~ 0.35 r ~ 0.5 CH IR I CH /I a1 /I b1 = 0.4/0.3/1.0 r I CH /I b1 I a1 /I b1 r CH ρ a1 r I CH /I b1 I a1 /I b1 r CH ρ a1 r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = r = (cm -1 ) IR int Raman int ρ r from ρ a1 H C=CCl 3036 ~ 41 ~ 37 < 0.1 ~ H C=CHCN ~ 3 ~ 48 ~ 3.5 P ~ 19 ~ 0.1 s ~ 3 ~ 0.4 ~ 4 dp ~ 1 P ~ 0.15 ~ (as CH) 1 1 r CH -

23 T V T = (1/)µ[d( r)/dt] V = (1/)K rr ( r) µ = m 1 m /(m 1 + m ) K rr (A.1) r mass-adjusted coordinate Q = (A.1) T = (1/)[dQ/dt] V = (1/)λQ λ = K rr /µ µ r (A.) T E v = hν(v + 1/), v = 0, 1,, ν(s -1 ) = (1/π) K rr /µ q = (4π λ/h ) 1/4 Q = (4π λ/h ) 1/4 µ r (A.3) q <v q v - 1> = <v - 1 q v> = [v/] 1/ (A.4) <v = 1 q v = 0> = [1/] 1/, <v = q v = 1> = [/] 1/ <v q v> = <v q v - 1><v - 1 q v> + <v q v + 1><v + 1 q v> = v + 1/ <v + q v> = <v + q v + 1><v + 1 q v> = [(v + )(v + 1)/] 1/ (A.5) µ α.4,.5 µ = µ e + (dµ/d r) 0 r = µ e + (dµ/dq) 0 q + (A.6) α = α 0 + (dα/d r) 0 r = α 0 + (dα/dq) 0 q + (A.7) µ e α 0 (A.5) H' = K rrr ( r) 3 + K rrrr ( r) 4 + CH - 3

24 3 K rrr v v ± 1 v ± 3 4 K rrrr v v (diagonal) v ± v ± 4 K rrr A: (1) X T(X) T(X) = (1/) m i [(dx i /dt) + (dy i /dt) + (dz i /dt) ] (B.1) m i i ( amu) X i, Y i, Z i i U(R) B: () X' (1) (X 0, Y 0, Z 0 ) () i (X i ', Y i ', Z i ') (X i - X 0, Y i - Y 0, Z i - Z 0 ) A (B.1) T = (1/){M(dX 0 /dt) + (dy 0 /dt) + (dz 0 /dt) + m i [(dx i '/dt) + (dy i '/dt) + (dz i '/dt) ]} M = m i m i X i ' = m i Y i ' = m i Z i ' = 0 () (X i ', Y i ', Z i ') () CH - 4

25 U(X') T(X') T(X') = (1/) m i [(dx i '/dt) + (dy i '/dt) + (dz i '/dt) ] (B.) C: r (a, b, c) r (a, b, c) ab H O b O b H a b ab initio DFT D, E (χ, θ, φ) X' X' r r U(χ, θ, φ) r = U(χ, θ, φ)x' (B.3) X' r (χ, θ, φ) (χ, θ, φ) r Eckart Eckart a b X' r Eckart N r 3N 3N - 6 3N - 5 X' r ω dx'/dt = ω r + dr/dt dr/dt (ω r) = ω (r dr/dt) T = M(dX 0 /dt) + (dy 0 /dt) + (dz 0 /dt) + i m i [(da i /dt) + (db i /dt) + (dc i /dt) ]] + (I aa ω a + I bb ω b + I cc ω c ) - (I ab ω a ω b + (I bc ω b ω c + (I ca ω c ω a ) + (Ω a ω a + Ω b ω b + Ω c ω c ) I aa = i m i [b i + c i ], I bb = i m i [c i + a i ], I cc = i m i [a i + b i ] I ab = i m i a i b i, I bc = i m i b i c i, I ca = i m i c i a i CH - 5

26 Ω a = - i m i [(db i /dt)c i - b i (dc i /dt)], Ω b = - i m i [(dc i /dt)a i - c i (da i /dt)], Ω c = - i m i [(da i /dt)b i - a i (db i /dt)] r 0 dr r r = r 0 + dr 0 = i m i da i = i m i db i = i m i dc i x 0 0 = i m i x 0 i y 0 i = i m i y 0 i z 0 i = i m i z 0 i x 0 i Eckart Eckart 0 = i m i [a 0 i d(db i /dt) - b 0 i d(da i /dt)] = i m i [b 0 i d(dc i /dt) -c 0 i d(db i /dt)] = i m i [c 0 i d(da i /dt) - a 0 i d(dc i /dt)] (m i )a i = s l (a) is Q s, (m i )b i = s l (b) is Q s, (m i )c i = s l (c) is Q s i [(l (a) is ) + (l (b) is ) + (l (c) is ) ] = 1, 0 = i l (a) is l (a) Is' = i l (b) is l (b) is' = i l (c) (c) is l is' s (dq s /dt) V 0 V 0 = s (λ s /)Q s λ s = (πcω s ) Q s = [(h/π) /λ s ] 1/4 q s q s H vib (0) = [(h/4π) s λ s ] 1/ [q s + (p s π/h) ] p s q s D: R CH HCH R 7.6 (1) X i -X j distance r ij () X i -X j - X k angle bending, deformation, φ ijk (3) θ (4) dihedral angle between X i -X j -X k and X j -X k -X l planes τ ijkl CH - 6

27 U vib T vib r ij T vib = T(R) U vib = K ii r ij + K ij r ij r jk C r R r R E: S CH CH 3 redundancy 360 (H i CH j ) (redundant coordinate) BF 3 CH - 7

28 F: Q i X i V = ij f ij X i X j X 1, X,, X n Q T = i (dq i /dt), V = i λ i Q i (dq i /dt) + λ i Q i = 0 Q i Eyring & Kimball, "Quantum Chemistry" (Wiley & Sons) d 3 GF C ~ E P R X R R; x, R, S, Q T = ij P R ip R jg R ij U = ij X R ix R jf R ij G R ij G R F R ij F R G R F R Λ λ i ν i = (λ i ) 1/ /πc G R F R L R Λ (G R F R )L R = L R Λ (L R ) -1 (G R F R )L R = Λ λ i Λ (ν i = (λ i ) 1/ /πc G R F R - Eλ i = 0 ν i P R i = T X R i T = i atom [(P i,a ) +(P i,b ) +(P ic ) ](1/m i ) CH - 8

29 G x 1/ m /m /m G x = /m N /m N / m N 7 µ i i 1/m i ρ ij i j 1/r 0 ij r 1 G( r 1, r 1 ) = µ 1 + µ φ 10 G( φ 10, φ 10 ) = ρ 01 m 1 + ρ 0 m + µ 0 (ρ 01 + ρ 0 - ρ 01 ρ 0 cosφ 10 ) ,, 3 G( θ 1 sinφ 03, θ 1 sinφ 03 ) = µ 1 ρ 01 sin φ 03 + µ ρ 0 sin φ µ 3 ρ 03 sin φ 10 + µ 0 (ρ 01 sinφ 03 + ρ 0 sinφ ρ 03 sinφ 10 ) r 01 r 0 G( r 01, r 0 ) = µ 0 cosφ 10 r 01 φ 10 G( r 01, φ 10 ) = -µ 0 ρ 0 sinφ 10 r 01 φ 03 G( r 01, φ 03 ) = -µ 0 [(u 30 - w 03 )cosφ 10 + (u 03 - w 30 )cosφ 301 ] u ijk = ρ ij /sinφ ijk, w ijk = ρ ij cosφ ijk /sinφ ijk F (valence force field) UB (Urey-Bradley) (general force field) CH - 9

30 UB UB Urey-Bradley-Shimanouti field 144 (brute force field) GF 4 CH 3 C 3v CH CH (CH(1) ) CH (CH() CH(3) ) C 3v C s (CH(1) CH()H(3) ) (CH()H(3) ) Q sym Q deg,a SFG CH 3 Q deg,b CH()H(3) Q sym Q deg,a IRAS SFG S = 0 1/ 1/ 0 1 / - 1/ r CH1 r CH r CH3 G F µ C + µ H µ C cosτ µ C cosτ G r = µ C cosτ µ C + µh µ C cosτ µ C cosτ µ C cosτ µ c + µh µ C = 1/m C, µ H = 1/m H, τ HCH angle CH - 30

31 K 1 + s F + t F' s F t F' s F t F' F r = s F t F' K + s F + t F' s F t F' s F t F' s F t F' K + s F + t F' s = r CH (1-cosτ)/q HH, t = r CH sinτ/q HH, q HH = r CH (1-cosτ), F = -0.1F K: C-H stretching force constant ( = 4.6 md/å), F H H repulsion constant ( < 0.3 md/å) G S = µ C + µ H µ C cosτ 0 µ C cosτ µ C + µ H + µ C cosτ µ C + µ H µ C cosτ K 1 + s F + t F' (s F t F' ) 0 F S = (s F t F') K + s F K + t F' (G S F S ) 1,1 = (µ C + µ H )(K 1 + s F + t F') + µ C cosτ (s F t F') (G S F S ),1 = [(µ C + µ H )(s F t F') + µ C cosτ (K 1 + s F)] (G S F S ) 1, = [(µ C + µ H )(s F t F') + µ C cosτ (K + s F)] (G S F S ), = (µ C + µ H )(K + s F) + µ C cosτ (K + 4s F t F') (G S F S ) 3,3 = [(µ C + µ H ) µ C cosτ ](K + t F') G s F s λ 1, = (1/){[(G s F s ) 1,1 + (G s F s ), ] ± D} D = [(G s F s ) 1,1 - (G s F s ), ] + 4(G s F s ) 1, (G s F s ),1 K 1 = K + K D = 9[(µ C + µ H )(s F - t F ) + µ C cosτ(k + s F)] -[(µ C + µ H )(s F - t F ) + µ C cosτ(k + s F)][(µ C + µ H ) - 4µ C cosτ] K + (µ C + µ H ) K {3[(µ C + µ H )(s F - t F ) + µ C cosτ(k + s F)] - (1/3)[(µ C + µ H ) - 4µ C cos] K } + (8/9)[(µ C + µ H ) + (µ C + µ H ) µ C cosτ - (µ C cosτ) ] K D 3[(µ C + µ H )(s F - t F ) + µ C cosτ(k + s F)] - (1/3)[(µ C + µ H ) - 4µ C cosτ] K + (4/7)[(µ C + µ H )/ µ C cosτ]( K/K )(µ C + µ H ) K CH - 31

32 λ 1 (CH) = (µ C + µ H + µ C cosτ)[k + (1/3) K + 3s F - t F ] + (/7)[(µ C + µ H )/µ C cosτ]( K/K )(µ C + µ H ) K λ (CH, s ) = (µ C + µ H - µ C cosτ)[k + (/3) K + t F ] - (/7)[(µ C + µ H )/µ C cosτ]( K/K )(µ C + µ H ) K λ 3 (CH, a ) = (µ C + µ H - µ C cosτ)[k + t F ] ~ (1/3)( K/K )ν deg ~ (1/6)( K/K )ν sym T d cosτ = -1/3 s = / 3 t = 1 /3 λ 1 (CH) (µ H + (1/3)µ C )[K + (1/3) K + F] - (/9)[(µ C + µ H )/µ C ]( K/K )(µ C + µ H ) K λ (CH, s ) (µ H +(4/3)µ C )[K + (/3) K] + (/9)[(µ C + µ H )/µ C ]( K/K )(µ C + µ H ) K λ 3 (CH, a ) = (µ H + (4/3)µ C )K L Q S L S = LQ GFL = LΛ, LL t = G t GFL = LΛ E = GF L 1 = (E 1 E ) / (E 1 E ) / 4 + E 1 E 1 E 1 L L 1 = (E 1 E ) / + (E 1 E ) / 4 + E 1 E 1 E 1 L 11 LL t = G L 11 + L 1 = G 1, L 1 + L = G, L 11 L 1 + L 1 L = G 1 L 11 = (E 1 E 1 ) G 1 [(E 1 E ) / (E 1 E ) / 4 + E 1 E 1 ] G E 1 (E 1 E ) (E 1 E ) / 4 + E 1 E 1 L = (E 1 E 1 ) G 1 E 1 + G [(E 1 E ) / (E 1 E ) / 4 + E 1 E 1 ] (E 1 E ) (E 1 E ) /4 + E 1 E 1 K 1 = K >> F L 1 - L L 1 L 11 L 11 L 1/3 L 11 1/ 3 L -1/ 3 Q 1 (1 3)[ r 1 + r + r 3 ] = Q sym CH - 3

33 Q (1 6)[ r 1 - r - r 3 ] = Q deg,a C 3v SFG CH 3 CH - 33

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information