Xray.dvi

Similar documents

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

QMI_09.dvi

QMI_10.dvi

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

重力方向に基づくコントローラの向き決定方法

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

TOP URL 1

phs.dvi

Gmech08.dvi

ssp2_fixed.dvi

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

all.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

chap03.dvi

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

85 4

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

chap1.dvi

Z: Q: R: C: sin 6 5 ζ a, b

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

QMI_10.dvi

IA

振動と波動

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

Note.tex 2008/09/19( )

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

v_-3_+2_1.eps

main.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

untitled

2011de.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

Microsoft Word - 学士論文(表紙).doc




D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

08-Note2-web

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

The Physics of Atmospheres CAPTER :

Part () () Γ Part ,


II 2 II

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

30

v er.1/ c /(21)

0 0. 0

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

pdf

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

webkaitou.dvi


Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

meiji_resume_1.PDF

Transcription:

1 X 1 X 1 1.1.............................. 1 1.2.................................. 3 1.3........................ 3 2 4 2.1.................................. 6 2.2 n ( )............. 6 3 7 3.1 ( )..................... 8 3.2..................... 9 3.3.............................. 12 3.3.1.......................... 12 3.4 1.................................... 13 4 13 4.1.................................. 13 4.2................................... 14 4.3 (Lorentz)......................... 14 4.4.................................. 16 1 2009 11 2013 12

1 X X X X ( X ) X 1.1... y = sinθ y = cos θ y = A sin(2πft + δ) = A sin(ωt + δ) A f ω = 2πf () (phase) δ T = 1/f y(t) = A sin(2πt/t + δ) (1.1) ( ) ( ) λ x y(x) = A sin(2πx/λ + ǫ) (1.2) ǫ (1.1) (1.2) (1.1) (1.2) E(t) = A sin(2πt/t + δ) E(x) = A sin(2πx/λ + ǫ) 1

(1.1) (1.2) ( ) T λ 1/T(=f) ( ) (wave number) k = 1/λ 1/T 2π/T 1/λ 2π k = 2π/λ 2π ω 2π 2π X 2π 2π k ω Table 1 2π T f = 1/T ω = 2π/T ( ) λ k = 1/λ k = 2π/λ k = 2π/λ ω = 2π/T A ( ) δ ǫ A = 1 δ = 0 ǫ = 0 2

(1.1) (1.2) ( ) ( ) x (1.1) x y(x, t) = sin(ωt kx) (1.3) (1.2) y(x, t) = sin(kx ωt) (1.4) 1.2... (1.3) (ωt ) (kx ) x x = (x, y, z) kx x 2π/λ k (1.3) (kx ) k x y( x, t) = sin(ωt k x) (1.5) (1.5) k x 1.3... sin cos 3

Euler( ) e iθ = cos θ + i sinθ i sin(ωt k x) e i(ωt k x) (Schrödinger ) ( ) ( cos ) (sin ) ( ) θ θ + δ sin(θ + δ) = sinθ cos δ + cos θ sinδ e i(θ+δ) = e iθ e iδ... k y k ( x, t) = e i(ωt k x) (1.6) 2 X X X X X 4

X X X X X ( ) ( ) X X k 1 X k 2 X k1 e - k2 1: k 1 = k 2 = 2π/λ ψ 0 = e iωt (2.1) 5

2.1 r 1 (2.1) k1 k2 r 1 K = k 2 - k 1 2: r 1 ( k 1 r 1 k 2 r 1 )/(2π/λ) ( ) K = k 2 k 1 ( ) ( K r 1 )/(2π/λ) K r 1 ( + K r 1 ) r 1 ψ 0 = e iωt ψ 1 ψ 1 = e i(ωt+ K r 1 ) = e iωt e i( K r 1 ) ψ 1 = ψ 0 e i K r 1 (2.2) r 1 e i K r 1 2.2 n ( ) n n X k 1 X k 2 K (2.2) ( ) ( ) j r j (j = 1, 2, 3,...,n) Ψ = ψ 0 n j=0 e i K r j = ψ 0 [ ] (2.3) 6

M (2.3) ψ 0 ( ) ( ) f M = e i K r j = M (2.4) j=0 K f M ( K) f M K ( ) f M n ( ) φ n ( r) r ρ n ( r) = φ n( r)φ n ( r) r dxdydz = d r ( ) ρ n ( r)d r = φ n( r)φ n ( r)d r d r dv dxdydz d r r n f M f M = M e i K r n = M n ρ n ( r)e i K r d r 2 ( ) ( ) K ( sinθ/λ ) [1] r ( ) 3 f M ψ 0 f M ( K ) R R e ik R 2 7

e ik R ψ 0 f M 1 ( ψ 0 ) 1 R e ik R ( ) P ( ) R j (j = 1, 2, 3,...,P) ( ) r j (l, m, n) = l a + m b + n c + R j l m n f j... 3.1 ( ) P F cell j f j R j ( ) F cell = P f j e i K R j (3.1) j=1 (3.1) ( ) f j F cell (3.1) 8

K j T jk F cell P F cell = f j T jk e i K R j (3.2) j=1 (3.2) ( ) T jk (3.1) (3.1) (3.2) X X ψ 0 y(ωt) y 2 (ωt) ( y (ωt)y(ωt) ) X y(ωt) = F cell ψ 0 I = ψ 0ψ 0 F cell F cell = F cell 2 ( ψ0ψ = e iωt iωt = 1 ) ( ) ψ 0 ψ ψ 0 3.2 a N a b Nb c N c ( N a N b N c ) F cell a l ( l a ) e ik l a ( ) F = N a N b l N c e i K (l a+m b+n c) F cell m n N a = F cell e ik l a e i K m b N c l N b m n e i K n c 9

L 1 = e ik l a L 2 = e i K m b L 3 = e ik n c L = L 1 L 2 L 3 (Laue) X F 2 = F cell F cell L 1L 1 L 2L 2 L 3L 3 (3.3) L 1 L 3 L 1 e ik a L 1L 1 = 1 e i(na 1) K a 1 e i K a e i K a 1 ei(na 1) K a 1 e i K a e i K a = 1 cos(n a 1) K a 1 cos( K a) N a 1 = N a K a = 2θ a L 1L 1 = ( sin(n aθ a ) sin(θ a ) )2 N a θ a π L 1 L 1 N a 2 ( ) N a 2 θ a π X L 1 L 1 L 3 L 3 X (L 1 L 1) θ a π K a 2π L 2 L 2 L 3 L 3 X K a K b K c 2π a b c K X X K F cell 2 ( ) K a K c 2π a b c ( ) u v w r = u a + v b + w c a c 10

( ) a = 2π( b c) a ( b c), b = 2π( c a) b ( c a), c = 2π( a b) c ( a b) a c h, k, l G = h a + k b + l c K G G = 2π/ ( ) a a = b b = c c = 2π (3.4) a b = a c = b a = b c = c a = c b = 0 (3.5) Laue K = k 2 k 1 k 2 = K + k 1 k 1 = k 2 k 2 2 = K + k 1 2 K 2 + 2 K k 1 = 0 θ K = 2 k 1 sinθ K G K G ( G ) G 2 = 2 G k 1 G = 2 k 1 sinθ Laue 2π/ d 2π d = 2 2π λ sinθ 2d sinθ = λ Bragg Bragg n 2dsin θ = nλ X d θ X X 2dsin θ nλ 2dsin θ = nλ Bragg Bragg X n = 1 2dsin θ = λ Bragg n = 1 Bragg n 2,3,4,... 2... n = 1 11

3.3 Laue (=Bragg ) K G F cell j R j = (u j, v j, w j ) F cell = f j e i G R j = f j e i(h a +k b +l c ) (u j a+v j b+wj c) = f j e 2πi(hu j+kv j +lw j ) (3.6) 3.3.1 f 1 ( K ) f 1 (0, 0, 0) f 1 F = f 1 e 2πi(0+0+0) = f 1 R 1 = (0, 0, 0) R 2 = (1/2, 1/2, 1/2) F = 2 f 1 e 2πi(hu j+kv j +lw j ) = f 1 (1 + e πi(h+k+l) ) j=1 h + k + l F = 0 R 1 = (0, 0, 0) R 2 = (1/2, 1/2, 0) R 3 = (1/2, 0, 1/2) R 4 = (0, 1/2, 1/2) F = 4 f 1 e 2πi(hu j+kv j +lw j ) j=1 = f 1 (1 + e πi(h+k) + e πi(h+l) + e πi(k+l) ) 12

h, k, l F = 4f 1 h, k, l F = 0 hkl ( ) 3.4 1 ( M f M K f M K ) ( ) [1] ( ) [2] ( ) [3] ( ) [4] 4 4.1 X (hkl) Bragg X F cell 2 (= F cell F cell ) X Bragg X X (hkl) (hkl) Bragg... 13

( ) 4.2 Bragg {100} (100) (010) (001) (100) (010) (001) ( ) F cell (100) 2 Bragg 6 F cell (100) 2 {110} (110) (110) (110) (110) (101) (101) (101) (101) (110) (101) (110) (101) (011) (011) (011) (011) 12 Bragg 12 F cell (110) 2 {111} {123} 48 M hkl Bragg F hkl 2 M hkl 3 4.3 (Lorentz) X ( ) ( N a N c ) [2] 3 hkl... hkl 14

0 180 y X ( y z ) x y 2θ I 1 2 (1 + cos2 (2θ)) (4.1) z k0 x e - 2 θ y 3: x-y Lorentz Bragg θ Bragg ( ) I 1 sin 2 (θ)cos(θ) (4.2) 15

Lorentz Lorentz Lorentz = 1 + cos2 (2θ) 2 sin 2 (θ)cos(θ) (4.3) 4.4 ( ) X 2 Lorentz (4.4) f j (4.4) [1] : (1980), p.480-482. [2] : (1998), p.83-94. 16