橡 PDF

Similar documents
橡 PDF

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Effects of Light and Soil Moisture Condition on the Growth of Seedlings for Quercus serrata and Quercus variabilis NISHIMURA, Naoyuki*, OTA, Takeshi**

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,



Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Steel Construction Vol. 6 No. 22(June 1999) Engineering

技術研究報告第26号


UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

342 FUJIWARA T. et al., , 1987, 1963, 1992, 1999, 2001b, 1985, 1985, 1988a 1988b, 1990, , 2001a, 1961, 1967, 1986 Minato et al., 198

udc-2.dvi

北海道水産試験場研究報告


A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc


Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

塗装深み感の要因解析

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu


Table 2. Average maximum and minimum temperatures in the unheated glasshouse during the period of study ( ) Table 3. Fresh weight of 100 anther

J. Soc. Cosmet. Chem. Japan. Vol. 22, No

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis


土木学会構造工学論文集(2011.3)

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

1..FEM FEM 3. 4.

b-017.doc

浜松医科大学紀要


(J. Yamashina Inst. Ornithol.), 25: 76-92, 1993 Breeding Biology of Dryocopus martius in Central Hokkaido Hirotomi Konishi*, Toshioki Suzuki*, Katsumi

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Title 泌尿器科領域に於ける17-Ketosteroidの研究 17-Ketosteroidの臨床的研究 第 III 篇 : 尿 Author(s) 卜部, 敏入 Citation 泌尿器科紀要 (1958), 4(1): 3-31 Issue Date URL


Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

I


ñ{ï 01-65

平常時火災における消火栓の放水能力に関する研究

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

J. Jpn. Inst. Light Met. 65(6): (2015)

日立金属技報 Vol.34

論文

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

<30362D8CB F95B62D8B C90E690B62D91BC3496BC976C2E706466>

Nippon Suisan Gakkaishi 55 (10), (1989) ) Effects of ph and Sodium Chloride on the Water Holding Capacity of Surimi and its Gel Yoshiaki Aka

CHEMOTHERAPY FEB Table 1 Background of volunteers

CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

Al-Si系粉末合金の超塑性

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

Relationship between Men's Commuting Clothes and their Awareness toward Work Setsuko Yajiri*, Tomoko Takaoka**, Machiko Morita*** and Shigeo Kobayashi

untitled

Key words: Antibodies to Leptospira, Tokyo, Uveitis

0-


Mikio Yamamoto : Young's Modulus of Elasticity and Its Variation with Magnetization in Ferromagnetic Nickel-Copper Alloys. Young's modulus of elastici

NVISION-K.D cm. SPSS Ver pp.


0801391,繊維学会ファイバ12月号/報文-01-西川

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst


Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

02[ ]小山・池田(責)岩.indd

untitled

南太平洋におけるマグロ類とマカジキの体長と体重の関係について


Studies on the nutritional physiology of rice stem rot fungi, Leptosphaeria salvinii and Helminthosporium sigmoideum var. irregulare (II) On the carbo

Title 外傷性脊髄損傷患者の泌尿器科学的研究第 3 報 : 上部尿路のレ線学的研究並びに腎機能について Author(s) 伊藤, 順勉 Citation 泌尿器科紀要 (1965), 11(4): Issue Date URL

The Japanese Journal of Psychology 1974, Vol. 44, No. 6, AN ANALYSIS OF WORD ATTRIBUTES IMAGERY, CONCRETENESS, MEANINGFULNESS AND EASE OF LEAR

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Table 1 Characteristics of the study participants in Imari municipal hospital


橡 PDF

論文

...Q.....\1_4.ai

untitled

<30315F985F95B65F90B490852E696E6464>

24 Depth scaling of binocular stereopsis by observer s own movements

Table 1 Muscle weight (g) and those ratio (%) in M. quadriceps femoris Table 2 Cross-sectional area (mm2) and those ratio (%) in M, quadriceps femoris

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

Journal of the Ceramic Society of Japan 103 [2] (1995) Paper Sintering and Grain Growth Rates of Two Spheres with Different Radii Hidehiko TAN

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

研究報告37号

10-渡部芳栄.indd

untitled

国土技術政策総合研究所 研究資料

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

untitled


Transcription:

* * Density Effect on lndividual Tree Size An optimal density observed in experimental stands of Abies sachalinesis MAST Kenji SEIWA and Yasunori KUBOTA 1965 3,33340,000 /ha 1 1.5 140190 1520 * Hokkaido Forest Experiment StationBibaiHokkaido 07901 20 57 10 Bulletin of the Hokkaido Forest Experiment StationNo. 20 December1982

1 (1965 ) Table 1. Design of experimental plot in 1965. No. 1 ha distance among area occupancy number per ha number per plot plot area investigated tree number per plot investigated plot area Plot No. trees per tree (m) () () () 1 0.50 0.25 40,000 3110 78 298 58 310 232 2 0.71 0.50 20,000 2210 110 208 81 220 160 3 1.00 1.0 10,000 1610 160 148 112 160 112 4 1.41 2.0 5,000 1110 220 98 144 110 72 5 1.58 2.5 4,000 1012 300 810 200 120 6 1.73 3.0 3,333 1012 120 At investigationwe excepted the individuals of plot edge from those of plot. 80 360 810 80 1 1968 10 15 1980 1030 1980 1980. ha 250 10 5 10 240 Fig Arrangement of experimental plots

2 (1980 ) Table 2. Outline of experimental plots in 1980 height stand density block (number/ha) D.B.H mean clear H Hmax () () length BO () mean crown length LO () D (cm) Dmax (cm) stem volume basal area 1 31,034 2.90 5.3 0.95 1.96 3.25 7.0 27 128 83.29 34.07 2 15,185 4.60 6.5 1.33 3.20 5.01 9.6 73 244 111.88 33.19 3 8,304 4.93 7.2 1.41 3.52 6.08 9.2 105 240 87.33 25.66 4 4,444 5.29 7.4 1.26 4.02 7.00 11.3 150 435 66.69 18.63 5 3,650 4.12 7.0 0.95 3.17 5.61 9.6 90 262 32.90 10.38 6 2,708 4.45 6.5 0.81 3.63 6.46 12.3 115 417 31.03 9.79 1 31,379 3.18 6.2 1.21 1.96 3.57 7.5 32 132 98.97 35.88 2 12,840 5.14 7.5 1.31 3.83 5.42 9.2 97 266 126.53 33.75 3 6,964 3.65 5.8 1.05 2.60 4.58 9.2 54 229 37.71 12.87 4 3,264 4.97 8.0 0.66 4.30 6.57 11.2 132 398 43.19 12.27 5 2,950 3.96 5.5 0.68 3.28 5.72 9.2 84 214 24.85 8.39 6 2,333 3.81 5.9 0.46 3.56 5.13 9.6 74 240 17.27 5.72 1 17,931 4.33 7.3 1.81 2.43 4.67 9.6 69 317 123.41 35.69 2 12,716 5.07 7.5 1.66 3.41 5.51 9.8 95 338 121.70 33.60 3 8,036 4.25 6.2 1.23 3.01 5.32 10.2 77 256 62.15 19.85 4 4,524 4.72 6.7 0.95 3.76 6.03 9.5 104 262 47.23 14.01 5 3,550 6.33 9.7 0.74 5.71 8.25 14.2 253 853 89.92 21.18 6 2,875 5.24 7.2 0.88 4.36 7.39 10.9 162 391 46.53 12.84 (/ha) Table 3 3 Transition of stand density and survival ratio block (/ha) stand density surval (number/ha) ratio(%) plot 1968 1980 1980 1965 1968 1980 1965 1968 1965 1 40,000 35,690 31,034 89.2 87.0 77.6 2 20,000 15,625 15,185 78.1 97.2 75.9 3 10,000 8,571 8,304 85.7 96.9 83.4 4 5,000 4,792 4,444 95.8 92.8 88.9 5 4,000 3,650 3,650 91.3 100.0 91.3 6 3,333 3,041 2,708 91.3 89.0 81.3 1 40,000 36,379 31,379 91.0 86.3 78.4 2 20,000 16,000 12,840 80.0 80.3 64.2 3 10,000 8,482 6,964 84.8 82.1 69.6 4 5,000 3,472 3,264 69.4 94.0 65.3 5 4,000 3,150 2,950 78.8 93.7 73.8 6 3,333 2,416 2,333 72.5 96.6 70.0 1 40,000 33,276 17,931 83.2 53.9 44.8 2 20,000 18,000 12,716 90.0 70.6 63.6 3 10,000 8,750 8,036 87.5 91.8 80.4 4 5,000 4,583 4,524 91.7 98.7 90.5 5 4,000 3,550 3,550 88.8 100.0 88.8 6 3,333 2,875 2,875 86.3 100.0 86.3

15 69.495.8 II 15 18 15 1980 2,333 /ha 2,708 /ha 2,8754,524 /ha 6,96431,379 /ha 3 1968 1980 Fig.3. Relations between survival ratio and stand density()(19681980) 1 30,000 /ha 30,000 /ha 2 1943 4 Fig 4 SHINOZAKIKIRA,1956 1/ H ( BO) ( LO) Relations between actual stand density()and mean height( H) A, mean clear length( B)and mean crown length( Lo)

5 D Fig 5 Relations between actual stand density ()and mean stem volume ( )and mean D.B.H..( D) 6 Fig 6 Relations between actual stand density ()and stem volume and basal area. 2 1 6 12,000 /ha 33.235.9 /ha 12,00018,000 /ha 112127 /ha 30,000 /ha 83,99 /ha 30,000 /ha 1 o 3. 3 1og 10 No 1 1969 1 cm m 710

tree numbers and solid curves are relative frequencies of the expected value from equation 13Explanation of figure as in figure 6 ***. ns ha Fig 7 Frequency distribution of each 13 Fig 8 Frequency distribution of each diameter class Histograms indicate relative frequencies of odserved diameter class. Histograms indicate relative frequencies of observed treenumbers and solid curves are relative frequencies of expectedvalue from equation ***stand for significant difference at the andlevel between 81030,000 /ha observed and expected valueswhile ns stands for nonsignificant difference at the 5 level. Numbers under histograms indicate actual stand densitynumberha 917,000 /ha

10 Fig.10 Relations between actual stand 14 density and skewness of frequency distributions of volume DBHand height Fig.9 friquency distribution of each height class Histograms indicate relative frequencies of observed tree numbers and solid curves are relative frequenciea of the exqected value from equation (14). Explanation figure as in figure 6. 10 2 J

3 KIKUZAWA1981 HOZUMI1971 a C I (2) max 3 (4) =AB /(I ) (5) max HOZUMI 1971 i i+1 i i+1 i i+1 i+1 i 1 i, /(1 ) 1 i+1 /1 (6) a 2 b 7 1/ 1/ h 1* 8 * abh 7 1943 8 1980 8 1/ h 1 1/H* 9 279 1 aba + 2 h + QD h b 1 / ( hb+ 2b 1) 2QD (H)abCP 2/ a 2/ 1 1QH 2/ ) b (2A1)(1 QH (11 hb + 1 1 2+ / H + 2 + -1 2 10 2 1QH H* 0 8 12 D i, i+1 i, i+1 10

N(D i,d i+1 ) Di+ 1 i (D)D a 1 D i +2 B A/(1-A) a(a1) D +2 i+1 B A/(1-A) 13 H i Hi+1 N(H i,h i+1 )11 Q0 N(H i,h i+1 ) Hi + 1 H (H)H +2 a 1P2/H i / B A/(1-A) a(a1)p 2/ + 2 / H i+ 1 B A/(1-A) 14 b 2 18 14 78 12 67 15 83 HOZUMI1971 11 0.790.56 11 A (D)D, (H)H Fig 11 Shapes of the D D curve and 12 H H curve as related to the change in the value of A 11 12 12 A Fig.12 Relation between value of parameter A and actual stand density() Block Block Block

4 Table.4 Parameters of distribution function in each stand densities A C a b (ha 1) ( 3 ) /ha (10 4 1 31,034 0.7891 0.0027 1.011 10 14 1.157 0.832 1.123 0.7945 2 15,185 0.7008 0.0073 1.076 10 9 1.100 0.8513 1.602 0.7744 3 8,304 0.5625 0.0105 1.635 10 6 0.9753 0.8805 1.496 0.6667 4 4,444 0.6552 0.0150 8.510 10 6 0.8340 0.9100 2.024 0.5002 5 3,650 0.6565 0.0090 1.947 10 7 0.9531 0.8873 1.118 0.7471 6 2,708 0.7242 0.0115 2.425 10 8 0.8933 0.9000 1.315 0.6557 1 31,379 0.7576 0.0032 1.491 10 12 1.070 0.8543 1.106 0.8320 2 12,840 0.6353 0.0097 2.621 10 7 0.7660 0.9236 1.583 0.7053 3 6,964 0.7642 0.0054 1.189 10 11 1.139 0.8463 1.119 0.7810 4 3,264 0.6683 0.0132 1.335 10 7 0.9785 0.8829 1.403 0.6707 5 2,950 0.6075 0.0084 2.925 10 6 1.182 0.8452 1.031 0.7750 6 2,333 0.6917 0.0074 9.737 10 7 0.8956 0.8995 1.255 0.6805 1 17,931 0.7823 0.0069 8.186 10 11 0.8916 0.8953 1.317 0.7807 2 12,716 0.7189 0.0095 1.358 10 9 0.9231 0.8882 1.572 0.6933 3 8,036 0.6992 0.0077 4.597 10 8 0.8301 0.9084 1.420 0.6615 4 4,524 0.6031 0.0104 2.812 10 6 0.8478 0.9068 1.083 0.8196 5 3,550 0.7034 0.0253 1.529 10 7 0.7683 0.9247 1.608 0.6502 6 2,875 0.5857 0.0162 5.722 10 5 0.7986 0.9181 1.548 0.6193 1968 15. 1979 1969 1980 KIRASHIDEI1967 1974

1969 1973 19631972 1980 1981 1980 1981 11965 15 1980 2,8754,524 ha 6,96431,379 /ha 2,3332,708 ha 12,000 /ha 30,000 ha 6 5

6 1112 1968 210 1 153 1973 84 202 203 HOZUMIK1971 Studies on the frequency distribution of the weight of individual trees in a forest stand A betatype distributionjapjecol. 21 152167 KIKUZAWA, K1981 Yielddensity diagram for todfir plantations A new YN curve based on the Betatype distribution JJapForSoc63 442450 KIRAT and SIDEIT1967 Primary production and turnover of organic matter in different forest ecosystems of the Western PasificJapJEcol30 7087 1981 53 4351 1969 71823 1943 1 46 1980 221pp 1969 283pp 1974 46 4050 1969 10 21 1824 1963 12 6468 1972 21 103108 1980 29 2426 SHINOZAKIKand KIRAT1956 Intraspecific competition among heigher plants Logistic theory of the CD effectjinstpolytech.osaka City Univ. SerD 7394 1979 41 90 321322

Summary Experimental stands in order to test the effect of different stand densities on the growth of Abirs sachalinensis MASTwere established at the experimental forest of Hokkaido Forest Experiment StationBibaitable fig12in 1965The stands were investigated in 1980 The survival ratio was lower in the stands of high densities than those of low densities fig The mean values of heightcrown lengthdiameter of burst heightand volume were maximum at the stands of middle densities2,875 4,444 trees haand each mean value decreased gradually toward both high densities 6,694 31,379 treeshaand low densities 2,333 2,708 treeshafigs As the stand density increasedbasal area and stem volume per hectare increased and reached the constant value in the stand densities higher than 2,000 treeshabut stem volume per hectare indicated less value than a constant value at two stands in the densities higher than 30,000 treesha fig Skewness of frequency distribution of volumediameter of burst height and height indicated minimum values at the stands of middle densities and the values increased gradually toward low and high densities figs 10The ratio of large individuals in a plot was higher in the stands of middle densities than those of low and high densitiesfrom the results mentioned aboveit is concluded that an optimal density for the growth of A sachalinensis existed in the stands of middle density There are three reasons why the optimal density appeared in the stands of middle densities Growth impediment by interspecific competition in the stands of low densities Clear increment of stand productivity by crown closure in the stands of middle densities. Growth suppression by intraspecific competition in the stands of high densities Utilizing the beta type distribution densityfunction of individual tree weight equation2and the equations 7 9of the allometriesthe distribution density functions of diameter and heightequation1011were derivedand frequency distributions of observed stands were well described by these functionsfigs79relation between valueof parameter A and stand density also indicated the optimal density figs1112