, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

Similar documents
等質空間の幾何学入門

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

main.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi


( ) (, ) ( )

i


Wide Scanner TWAIN Source ユーザーズガイド

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー


Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

2 A A 3 A 2. A [2] A A A A 4 [3]



Dynkin Serre Weyl

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

OCAMI


「産業上利用することができる発明」の審査の運用指針(案)

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2010 ( )

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

II

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

agora04.dvi

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29


( ) ( ) (B) ( , )

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

エクセルカバー入稿用.indd

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

Chap10.dvi

ii

2

01_.g.r..

untitled

i

AccessflÌfl—−ÇŠš1

2

kb-HP.dvi

M41 JP Manual.indd

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

困ったときのQ&A

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

untitled


R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

09_organal2

Twist knot orbifold Chern-Simons

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

ii


untitled


86 7 I ( 13 ) II ( )

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法


i

入門ガイド

ESD-巻頭言[ ].indd

kokyuroku.dvi

‚æ27›ñ06-…|…X…^†[

inkiso.dvi

n ( (

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

橡6.プログラム.doc

SC-85X2取説


xia2.dvi

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

パソコン機能ガイド

パソコン機能ガイド

"05/05/15“ƒ"P01-16

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

untitled

Javaと.NET


Transcription:

( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally homogeneous submanifold F k,ϕ tube., (i), (ii). (iii) (iv), Berndt ([1]). (v) (vi), Berndt Brück ([2])., Berndt ([6]), CH n,.,,.,., [6], [13]. 1.1, CH n. 1.2. (M, g) N M, N (, H Isom(M, g) s.t. N = H.p).,,. CP n, ([10])., 1.1, CP n CH n., CP n 2007 (, 2007/11/22 24) tamaru@math.sci.hiroshima-u.ac.jp 1

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n,,. 1.3.., cohomogeneity ( ).,, ( )., cohomogeneity one.,, cohomogeneity one., cohomogeneity one,., cohomogeneity one.,, Isom(CH n, g) = SU(1, n),., su(1, n),,., CP n CH n., Isom(CH n ),., Isom(CP n ),., CH n. 2 : CH n, n, c < 0., CH n,. CH n., CH n = U(1, n)/u(1) U(n)., - ([9]) Goldman ([8]). 2

2.1 Ball model CH n, C n. 2.1. B n := {z C n z, z < 1} C n ball. z, w := z k w k., B n, CH n., [8], [9]. c,,. c = 1 ( )., [ 1, 1/4]. 2.2 Projective model CH n ball model,,. CH n, CP n., CP n C n+1 \ {0} (z C n+1 \ {0}, [z] := Cz CP n )., : F : C n+1 C n+1 C : (z, w) z 0 w 0 + n k=1 z kw k. 2.2. C n ball B n, M := {[z] CP n F (z, z) < 0}.., CP n (U, ϕ) : U = {[z 0 : : z n ] P (C n+1 ) z 0 0}, ϕ : U C n : [z 0 : : z n ] (z 1 /z 0,..., z n /z 0 ). M U. ϕ : M B n., CP n M CH n., : U(1, n) := {g GL(C n+1 ) F (gz, gw) = F (z, w) ( z, w C n+1 )}. 2.3. U(1, n), C n+1, CH n.. U(1, n) C n+1,, U(1, n) CP n (i.e., g.[z] := [g.z])., U(1, n) F, M = CH n.. 2.3 CH n, projective model, U(1, n). 2.4. CH n = U(1, n)/u(1) U(n).. U(1, n) CH n,. o := [1 : 0 : : 0] CH n. o U(1, n) o = U(1) U(n) 3

,., U(1, n) CH n., ( ) : o, CH n U(1, n).o = U(1, n)/u(1) U(n),. U(1, n).,., SU(1, n) := {g U(1, n) det(g) = 1},., CH n = SU(1, n)/s(u(1) U(n))., S(U(1) U(n)) := SU(1, n) (U(1) U(n)). 2.4 CH n = U(1, n)/u(1) U(n). 2.5. U(1, n) : z t ξ u(1, n) = ξ B z u(1), ξ Cn, B u(n).. F, I 1,n := diag( 1, 1,..., 1), : F (z, w) = t zi 1,n w., u(1, n) = {X M n+1 (R) t XI 1,n + I 1,n X = 0}.. o K := U(1) U(n). g K CH n, o T o CH n ( isotropy ).,. 2.6. u(1, n) = k + p : z k = B = u(1) u(n), p = ξ t ξ = C n., [k, k] k, [k, p] p, [p, p] k. k K., K p., isotropy., 2.7. (dπ) e p : p T o CH n, K-., π : U(1, n) U(1, n)/u(1) U(n) = CH n, (dπ) e : u(1, n) T o CH n. T o CH n = p, p K-., p = C n, p ( Killing form ). 4

3 : cohomogeneity one, 1 ( )..,. 3.1. H M cohomogeneity one, H p ν p (H.p)., H p H p M, H.p p H-, ν p (H.p) p H.p., ( ), cohomogeneity one. 4 1.1 (i), (ii)., CH n = G/K 3.1., G = U(1, n), K = U(1) U(n). g, k. 4.1., CH n. (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube.. cohomogeneity one. (i), H := U(1, k) U(n k) CH n. H, h : z t ξ h := ξ B z u(1), ξ C k, B u(k), B u(n k) B. o H o, o H- H.o, H o = H K = U(1) U(k) U(n k), H.o = U(1, k)/u(1) U(k) = CH k CH n.. H cohomogeneity one, CH k tube (H ). o. ( 2.6) T o CH n = p, t ξ t ξ T o CH k = ξ ξ C k, ν och k = ξ C n k., H o ν o (CH k ), U(n k) C n k., 3.1., (ii), SO 0 (1, n). RH n, SO(n) R n. ξ 5

H = U(1, k) U(n k), CH k (G ) normalizer., CH k. U(1, k), CH k cohomogeneity one., CH n, tube (, ), (i), (ii)., CH n, normalizer ([2]).,, tube ([5]). 5 1.1 (iii), (iv)., cohomogeneity one., CH n. 5.1 CH n, G = U(1, n) (, )., 2.6 g = u(1, n) = k + p., p {P j, Q j j = 1,..., n} : P j := E j+1,1 + E 1,j+1, Q j := 1E j+1,1 1E 1,j+1. P 1, a := span R {P 1 }. a, p. 5.1. ad P1 0, ±1, ±2., (1) 0 g 0, z g 0 = z z u(1), B u(n 1) a. B (2) g = g 2 + g 1 + g 0 + g 1 + g 2 gradation., [g j, g k ] g j+k ( j, k).. (1),.,., [P 1, [P 1, P j ]] = P j, [P 1, [P 1, Q 1 ]] = 4Q 1, [P 1, [P 1, Q j ]] = Q j. k g k,, g ±1 = span R {P j ± [P 1, P j ], Q j ± [P 1, Q j ] j = 2,..., n}, g ±2 = span R {2Q 1 ± [P 1, Q 1 ]}., g = g 2 + g 1 + g 0 + g 1 + g 2, ad P1 0, ±1, ±2. (2) gradation, Jacobi. gradation, u(1, n) a (, CH n 1 ). 6

5.2. s := a + g 1 + g 2, : (1) n := g 1 + g 2 Heisenberg., {X j, Y j, Z} : [X j, Y j ] = Z, bracket 0. (2) s := a + n Damek-Ricci., A a : [A, X j ] = (1/2)X j, [A, Y j ] = (1/2)Y j, [A, Z] = Z.. (1), n : X j := 2P j+1 + 2[P 1, P j+1 ], Y j := 2Q j+1 + 2[P 1, Q j+1 ], Z := 2Q 1 + [P 1, Q 1 ]., A := 2P 1, (2). g = k + a + n ( G = KAN). 5.3. s := a + g 1 + g 2, CH n.. s := a + g 1 + g 2 S (S U(1, n), CH n )., o S o = S K = {1} ( s k = {0}, 5.1 g 1, g 2 )., CH n S.o = S/S o = S. dim S = 2n = dim CH n, S = S.o = CH n,., CH n = S ( ). CH n, s = a + n. 5.4. CH n, s J,,., JA = Z, JX j = Y j.,,, {A, X i, Y i, Z}. c = 1, s ( Damek-Ricci ([7])). 5.2 CH n, cohomogeneity one. s = span R {A, X j, Y j, Z j = 1,..., n 1}. 5.5., CH n. (iii). (iv) ruled minimal, equidistant.. CH n S., s 1 : n = span R {X j, Y j, Z}, s := s RX 1., S, cohomogeneity one ( 1 )., n. ruled minimal, s o. 7

, CH n cohomogeneity one, ( )., cohomogeneity one ([4])., cohomogeneity one, 1 (CH n ) 2,. 5.3, ( cohomogeneity one, )., (s,, ). s s ξ := s Rξ 1 ( ξ )., (s,, ) Levi-Civita, A ξ : s ξ s ξ., Koszul s ξ, : 2 A ξ X, Y = 2 X Y, ξ = [ξ, X], Y + X, [ξ, Y ]. (5.1) 5.6. 2, ruled minimal 3.. A ξ., ξ = A. ad ξ, (5.1), A ξ : n n : X [ξ, X]. A ξ g 1 g 2, 2. ruled minimal, ξ = X 1. A ξ : s s, (5.1) A ξ (A) = (1/2)X 1, A ξ (Y 1 ) = (1/2)Z, A ξ (Z) = (1/2)Y 1, A ξ (X j ) = 0, A ξ (Y j ) = 0. A ξ 0, ±1/2 3. S.p,, ( [1], [4] ). ( ),. 6 1.1 (v), (vi)., cohomogeneity one., CH n. 6.1 CH n : CH n = U(1, n)/u(1) U(n) = SU(1, n)/s(u(1) U(n)) = S. 8

S, U(1, n), CH n., S H U(1, n) H, H CH n.,. 6.1. 5.1 gradation u(1, n) = g 2 + g 1 + g 0 + g 1 + g 2. q := su(1, n) (g 0 + g 1 + g 2 ), su(1, n)., q SU(1, n),., u(1, n) su(1, n), ( u(1, n) ).,, SU(1, n) ( CH n 1 ). 6.2. SU(1, n) Q, CH n., (1) CH n = Q/U(n 1), z u(n 1) = z B B u(n 1), 2z = tr(b). (2) q = u(n 1) + a + n,, [u(n 1), a + n] a + n. (3) (dπ) e a+n : a + n T o CH n, U(n 1)-., π : Q Q/U(n) = CH n, (dπ) e : q T o CH n.. (1) 5.1. (2). (3). cohomogeneity one,.,,. 6.2 CH n = Q/U(n), CH n cohomogeneity one. q = su(1, n) (g 0 +g 1 +g 2 ). k 0 := g 0 s(u(1) + u(n)) = u(n 1), K 0. 6.3. V g 1 ( dim V 2) N K 0(V ) V. N K 0(V ) K 0 V normalizer., (1) s V := s V N k 0(V ) + s V, s = a + n. (2) N k 0(V ) + s V cohomogeneity one, o.. (1), V g 1, q,. (2), N k 0(V ) + s V o. 6.2, s = T o CH n U(n 1)-. o F, T o F = s V, ν o F = V. N k 0(V ) V., 3.1, cohomogeneity one. F, T o F = s V dim V 2. 9

, dim V = 1, cohomogeneity one., ( 5 ). 6.4., CH n. (v) normally homogeneous submanifold F k tube. F k, k = 2,..., n 1,. (vi) normally homogeneous submanifold F k,ϕ tube. F k,ϕ, 2k (k = 1,..., n 1), Kähler ϕ (0, π/2).., U(n 1), g 1 = span R {X i, Y i } = C n 1., 6.3. (v), V := span R {X 1,..., X k }., N U(n 1) (V ) SO(k) V = R k, 6.3, N k 0(V ) + s V cohomogeneity one. o F k, k, ν o F k = V (, g 1 k, V U(n 1)- ). (vi), V := span R {X 2i 1, cos(ϕ)y 2i 1 + sin(ϕ)y 2i i = 1,..., k}., N U(n 1) (V ) = SO(2k) V = R 2k, 6.3, N k 0(V ) + s V cohomogeneity one. o F k,ϕ, 2k, ν o F k,ϕ = V Kähler ϕ (, g 1 2k, Kähler ϕ, V U(n 1)- ). k = n, F k RH n, ϕ = 0, F k,0 CH k., F k, F k,ϕ. 6.3 (v), (vi),, Berndt Díaz-Ramos ([3]). (v), 4, (r = log(2 + 3)) 3. (vi), 5, k = 1 4.,. 6.5 ([3])., 2, 3, 4, 5. 6.4 CH n cohomogeneity one, g 1 = C n 1, U(n 1)-. k,, U(n 1) G k (R 2n 2 ) ( G k (R 2n 2 ) k Grassmann )., 10

Hermann,. 1 cohomogeneity one, CH n, : RH n : SO(n 1) G k (R n 1 ). ( ) HH n : Sp(n 1) G k (R 4n 4 ). ( ) OH 2 : Spin(7) G k (R 8 ). ( ) HH n, Hermann,. ( ), HH n.,,,, CH n. [1] Berndt, J.: Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998), 589 600. [2] Berndt, J., Brück, M.: Cohomogeneity one actions on hyperbolic spaces. J. Reine Angew. Math. 541 (2001), 209 235. [3] Berndt, J., Díaz-Ramos, J.C.: Homogeneous hypersurfaces in complex hyperbolic spaces. Preprint. arxiv:math/0612157. [4] Berndt, J., Tamaru, H.: Homogeneous codimension one foliations on noncompact symmetric spaces. J. Differential Geom. 63 (2003), 1 40. [5] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit. Tôhoku Math. J. 56 (2004), 163 177. [6] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one. Trans. Amer. Math. Soc. 359 (2007), no. 7, 3425 3438. [7] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Mathematics 1598, Springer-Verlag, Berlin, 1995. [8] Goldman, W.M.: Complex hyperbolic geometry. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1999. [9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. [10] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10 (1973), 495 506. [11] Tamaru, H.: Cohomogeneity one actions on symmetric spaces with a totally geodesic singular orbit (in Japanese). 1292 (2002), 106 114. [12] Tamaru, H.: Cohomogeneity one actions on symmetric spaces. 45 (2003), 105 120. [13] Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one (in Japanese). 2003, 43 48. 11