等質空間の幾何学入門

Size: px
Start display at page:

Download "等質空間の幾何学入門"

Transcription

1 2006/12/04 08

2 i, 2006/12/ , 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,.

3 ii :

4 1 1,.,,. :,., G/K.,.,., [KO, 7], [M, 4]. 1.1 :,.,. 1.1 M n (R) n n, : (1) GL n (R) := {g M n (R) det(g) 0} general linear group. (2) O(n) := {g GL n (R) t gg = I n } orthogonal group. (3) SL n (R) := {g GL n (R) det(g) = 1} special linear group. (4) SO(n) := SL n (R) O(n) special orthogonal group.,. O(n), R n GL n (R). 1.2 O(n) = {g GL n (R) x, y R n, gx, gy = x, y }., R n.

5 , M n (C) n n, : (1) GL n (C) := {g M n (C) det(g) 0}. (2) U(n) := {g GL n (C) t gg = I n } unitary group. (3) SL n (C) := {g GL n (C) det(g) = 1}. (4) SU(n) := SL n (C) U(n) special unitary group. 1.4 U(n) = {g GL n (C) x, y C n, gx, gy = x, y }., C n., H. classical group.,., 1.5 H 3 Heisenberg : 1 x z H := 0 1 y x, y, z R Heisenberg H. 1.2 G M.,, g, h G, e G, p, q M. 1.7 Φ : G M M : (g, p) Φ(g, p) =: g.p G M action, : (1) (gh).p = g.(h.p), (2) e.p = p.. g.p = Φ(g, p), g p gp, g.p. G M, G M. 1.8 Φ : GL n (R) R n R n : (g, v) g.v := gv GL n (R) R n. GL n (R) G R n., G M, G G M.,,., :

6 RH 2 := {z C Im(z) > 0}. SL 2 (R) RH 2 : [ Φ : SL 2 (R) RH 2 RH 2 a b : ( c d ], z) az + b cz + d. RH 2., , SL 2 (R) RH 2..,,.,, : 1.11 M, Aut(M) := {f : M M : }.., (1) Φ : G M M, : ϕ : G Aut(M) : g Φ(g, ) Φ(g, ) : p Φ(g, p). (2), ϕ : G Aut(M) : g ϕ g, : Φ : G M M : (g, p) ϕ g (p). ϕ ,.,, Aut(M). Aut(M) M G V ϕ : G GL(V ), representation., G M, G.p := {g.p M g G} G p M orbit. M.,,.

7 , G M transitive, : p, q M, g G : g.p = q. : 1.16 R n R n : R n R n R n : (g, p) g+p.,, : 1.17 G M, o M., p M, g G s.t. g.p = o, G M., : 1.18 n 2. O(n) S n 1., R n 2 O(n), R n 2 O(n), O(n) S n 1., M, M G. G G K, g h : g 1 h K G., G/K := G/ G K coset space. G/K = {gk g G}. K, G/K. M G-, M G.

8 M G-. p M, G p := {g G g.p = p}, : G/G p M : [g] g.p. G p isotropy subgroup G := O(n + 1) S n, {[ ] } 1 G e1 = O(n + 1) α O(n) = O(n). α S n : S n = O(n + 1)/O(n)., p G p : {[ α G en+1 = 1 ] } O(n + 1) α O(n) G e1., G p G q, : G/G p = G/Gq M G-, p, q M. G p G q g G : g 1 G p g = G q. M = G/G p, M (G, G p ),., M (G, G p ) G G/K, G G/K : G G/K G/K : (g, [h]) g.[h] := [gh] RP n, G k (R n ), G k1,...,k l (R n ) : (1) RP n := (R n+1 \ {0})/, v w : c 0 : v = cw. (2) G k (R n ) := {V K n V, dim V = k}. (3) G k1,...,k l (R n ) := {(V k1,..., V kl ) V k1 V kl :, dim V ki = k i } : RP n G 1 (R n+1 ) : [v] Rv.

9 6 1,, GL n (R) G k (R n ) : g.v := {gv v V }. (1) G k (R n ) GL n (R)-, G k (R n ) = GL n (R)/B. {[ ] } B = GL 0 n (R). (2) G k (R n ) O(n)-, G k (R n ) = O(n)/O(k) O(n k). 1.27,.,, RH 2 SL 2 (R) 1.9.., : 1.29 G k (R n ) = G n k (R n ). G k (R n ) = O(n)/O(k) O(n k) G n k (R n ) = O(n)/O(n k) O(k).,., : G k (R n ) G n k (R n ) : V V.

10 7 2 M G/K.., M, G/K, M = G/K,. G/K, G.,. :, +.,.,.,.,.,,., [KO, 5 ], [O2], [W, Chapter 3]. 2.1,,.,. C G Lie group, : (1) G G G : (g, h) gh C -. (2) G G : g g 1 C -. (1), (2) : G G G : (g, h) gh 1 C -.

11 : (1) R n. (2) GL n (R). (3) 3 Heisenberg. R n. GL n (R), M n (R) = R n Heisenberg H, R 3, H.,,., 2.4 SO(2) = S 1., 4, C -., SO(n),.,. 2.5 F : GL n (R) R m C -, G := {g GL n (R) F (g) = 0}., dim Ker(dF ) g = k g G, G k-., rank(jf ) g = n 2 dim Ker(dF ) g = n 2 k., G k. C -,.,. p G, T p G := {ċ(0) c : I M n (R) : C, c(i) G, c(0) = p}. T p M = Ker(dF ) g., dim T p G p, G. 2.6 F g (df ) g, : (df ) g (X) := lim t 0 (1/t)(F (g + tx) F (g)). 2.7 O(n), dim O(n) = n(n 1)/2. T e O(n) = {X M n (R) t X + X = 0}., : O(n).

12 : SL n (R), dim SL n (R) = n : GL n (C), dim GL n (C) = 2n 2., F (g) = 0 F. SL n (R). GL n (C) : GL n (C) GL 2n (R). n = , g R, [, ] : g g g. (g, [, ]) Lie algebra, : (1) [X, Y ] = [Y, X]. (2) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0..,. (g, [, ]), [, ] bracket product. (ii) Jacobi identity. 2.11, [X, Y ] := 0 abelian Lie algebra gl n (R) := M n (R), [X, Y ] := XY Y X.,,. 2.13, [X, Y ] := XY Y X : gl n (R) := M n (R) general linear Lie algebra, o(n) := {X gl n (R) X + t X = 0} orthogonal Lie algebra, sl n (R) := {X gl n (R) tr(x) = 0} special linear Lie algebra., SO(n) := O(n) SL n (R). so(n) := sl n (R) o(n), so(n) = o(n), O(n) SO(n), [X, Y ] := XY Y X : gl n (C) := M n (C), u(n) := {X gl n (C) X + t X = 0} unitary Lie algebra,

13 10 2 sl n (C) := {X gl n (C) tr(x) = 0}, su(n) := sl n (C) u(n). 2.15, 3 Heisenberg : h := 0 x z 0 0 y x, y, z R.,., R n C n,, (1) o(n) = {X gl n (R) v, w R n, Xv, w + v, Xw = 0}. (2) u(n) = {X gl n (C) v, w C n, Xv, w + v, Xw = 0}. 2.3,, G a G, : L a : G G : g ag., L a (dl a )g : T g G T ag G : (dl a )g(v) : C (M) R : ϕ v(ϕ L a )., T G := g G T g G G, dl a : T G T G X : G T G, : L a G G X X T G dl a R n : T G 2.19 R n X := f i. x i, f i

14 2.4 11, R n : (dl a ) g ( x i ) g = ( x i ) a+g G, g, G. X, Y, [X, Y ], G = R n, g = span R { x 1,..., x n }, n : α : g T e G : X X e., g T e G.,. 2.4,.,,, g, g. ϕ : g g, : X, Y g, ϕ([x, Y ]) = [ϕ(x), ϕ(y )]., GL n (R) g, gl n (R). G = GL n (R), M n (R) = R n2, T e G M n (R) = R n2., G g, T e G., : g = T e G = M n (R) = gl n (R)., : ϕ : g gl n (R) : X (X e x ij ) ij., x ij : G R, (i, j)- G. ϕ gl n (R) [X, Y ] = XY Y X G, G H, : (1) G H. (2) G H. (3) (1), (2) H.

15 12 2., i : H G,, i i : H G, di : h g., h di(h)., h g., GL n (R), gl n (R), O(n) o(n). 2.26, O(n). O(n) 2.7, : (1) SL n (R) sl n (R). (2) GL n (C) gl n (C). (3) U(n) u(n). 2.5,.,., G, g X e T e G, 1 c X : R G : s.t. ċ X (0) = X e. c X G, g. exp : g G : X c X (1). : C -,., 0 g : d exp 0 : g T e G : X X e., : 2.31 exp : g G, 0 g e G.,.,,.

16 exp : gl n (R) GL n (R), : exp(a) := e A := k=0 2.33, : A k k!. (1) Be A B 1 = e BAB 1, (2) det e A = e tra, (3) e A+B = e A e B if AB = BA exp : gl n (R) GL n (R),. : X gl n (R), c X (t) := (tx) k /k! c X (0) = X., 1 exp, R R > X o(2), e X SO(2)., G GL n (R), g = {X gl n (R) t R, e tx G}., O(n) o(n) , : (1) SL n (R) sl n (R). (2) GL n (C) gl n (C). (3) U(n) u(n) Heisenberg H, h : 1 x z 0 x z H := 0 1 y x, y, z R, h := 0 0 y x, y, z R :.

17 14 3, G M, G/G p M.,, G/G p M. : G M, G p. G, H, G/H. dim G/H = dim G dim H. M = G/H, H T p M., reductive g = h p.,., [KO, 6 ], [W, Chapter 3] G M C -, G M M : (g, p) g.p C -.,,. 3.2 : (1) GL n (R) R n, (2) O(n + 1) SO(n + 1) S n.

18 ,. 3.3 G a G. G, : (1) L a : G G : g ag. (2) I a : G G : g aga 1 I a. (3) Ad a : g g : X (di a ) e (X)., G g T e G. I Ad,., ϕ : G M : g g.p,. {p}, : 3.4 G M, p M, G p := {g G g.p = p} G. 3.2 G/G p,., G H, G/H. H : 3.5 G, H, π : G G/H. π G/H, H G. G G/H : a G, a.[g] := [ag]. 3.6 G H, G/H : G G/H., G/H., exp, : g = h p p. π exp : p G/H, 0 p U [e] G/H N., (N, (π exp) 1 ) [e]. G : {(gn, (π exp) 1 g 1 )} g G, G/H.

19 G M. ϕ : G/G p M : [g] g.p, G/G p C., M, G G p. 3.8 S 2 = O(3)/O(2), ψ p := (1, 0, 0) : ψ(a, b) := (cos a cos b, sin a cos b, sin b)., : 3.9 dim G/H = dim G dim H., S n = O(n + 1)/O(n) dim O(n + 1) = dim O(n) + n. : dim O(n) = n(n 1)/2. dim O(n) = dim o(n) G k (R n ) = O(n)/O(k) O(n k), : dim G k (R n ) = dim O(n) (dim O(k) + dim O(n k)) = k(n k) G 1,2,...,n 1 (R n ). 3.3 M = G/G p, G p T p M., ϕ : G Aut(M). p M, G p T p M isotropy representation : (dϕ) : G p GL(T p M) : a (dϕ a ) p.,., 1.23., : 3.14 G M, p, p q.

20 3.3 17, 3.15 α : G 1 GL(V ) β : G 2 GL(W ) equivalent, : : ϕ : G 1 G 2 :, F : V W : s.t. α g V V F F W β ϕ(g), : 3.16 O(3) S 2, O(2) R 2.,., 3.3 Ad : G GL(g). Ad H : H GL(g) G/H reductive, : p g : (Ad H )- s.t. g = h p., reductive.,, G/H reductive g = h p., Ad H : H GL(p). : 3.19 O(n + 1) S n, O(n) R n SL 2 (R) H 2, : SO(2) R 2. S 2 = SO(3)/SO(2), SO(2) R 2.,., S 2 H O(n) G k (R n ), : O(k) O(n k) M n k,k (R), (a, b).x := bx t a. M n k,k (R) (k, n k)-. p = T p G k (R n ), dim G k (R n ) = k(n k). W

21 18 4 G M., p M G.p M.,.,,., R 3 SL 3 (R)/SO(3),,. 4.1.,. 4.1 G N. N M G, : G G : s.t. M G -., : G N, p N M := G.p N., G.p := {g.p N g G }. 4.2, : M = G /G p.

22 4.1 19, M = G/H., M N,. G-., : 4.3 α : G M, β : G N. f : M N G-, : α g M M f f N β g g G, : 4.4 S n = O(n + 1)/O(n) R n+1 O(n + 1)-. e 1 S n, S n = O(n + 1).e 1 R n+1.,,,., G- N, G G := O(3) R 3 R 3, : N (a, v) G w R 3, (a, v).w := aw + v., G R 3 : (1) S 2 (r) := {(x, y, z) x 2 + y 2 + z 2 = r 2 }. (2) S 1 (r) R := {(x, y, z) x 2 + y 2 = r 2 }. (3) R 2 := {(x, y, 0)}.. (1) G 1 := O(3), v := (r, 0, 0). (2) G 2 := O(2) {(0, 0, z)}, v := (r, 0, 0). (3) G 3 := {(x, y, 0)} R 3, v := (0, 0, 0). G O(3) R 3,. (a, v) (b, u) = (ab, au + v) R 3,,. G, R 3. 2,. R 3,, G 1, G 2, G 3., G N., G G, G.,.,.

23 S n, O(n + 1) G S n S n 1 (r) (r 0): {( ) } 1 G := α O(n) = O(n). α, r > 0 1. r = 0, G S n S k 1 (r 1 ) S n k 1 (r 2 ) (r1 2 + r2 2 = 1): {( ) } α G := α O(k), β O(n k) = O(k) O(n k). β, r 1 > 0 r 2 > 0 1. r 1 = 0 S n k 1 (1), r 2 = 0 S k 1 (1)., S k S n k = (O(k + 1) O(n k))/(o(k) O(n k 1)).., SL 3 (R)/SO(3)., s-,. 4.9 SL 3 (R)/SO(3), (1) reductive: sl 3 (R) = o(3) p, p := {X sl 3 (R) t X = X}. (2) : a.x := axa 1 (a SO(3), X p). O(3) p. p X, Y := tr( t XY ), p S 4.

24 p a : λ 1 a := λ 2 λ 1, λ 2, λ 3 R.. : 4.11 p a : a := λ 1 λ 2 λ 1 λ 2 λ 3. λ 3 λ 3, X a X X p. O(3) X h X : h X = {Y o(3) [Y, X] = 0}. bracket, : 4.13 X a, (1) λ 1 = λ 2 > λ 3, h X = o(2). (2) λ 1 > λ 2 = λ 3, h X = o(2). (3) λ 1 > λ 2 > λ 3, h X = 0., : 4.14 X a, (1) λ 1 = λ 2 > λ 3, H.X = O(3)/O(2) O(1). (2) λ 1 > λ 2 = λ 3, H.X = O(3)/O(1) O(2). (3) λ 1 > λ 2 > λ 3, H.X = O(3)/O(1) O(1) O(1). (1) (2), G 1 (R 3 ) = RP 2, S 4. Veronese surface. 4.15, G 2 (R 5 ).,,., a, a. h X,.

25 22 5,,.,. :..,. [A], [B]. 5.1 : 5.1 M = G/H reductive, g = h p reductive. p Ad H -, M G-. G/H G- G/H,,. p T o M, G- T o M., : 5.2, M G-., p M, T p M g p : a G, g a.o (X, Y ) = (da) p (X), (da) p (Y ). g p, well-defined, a.o = b.o (da) p (X), (da) p (Y ) = (db) p (X), (db) p (Y ). Ad H -, well-defined.

26 M = G/H reductive. M G-, Ad H. Ad H p., G/H. Shur : 5.4 M = G/H reductive, Ad H., Ad H p, G-. X(M) M. (M, g) : 5.5 : X(M) X(M) X(M) Levi-Civita : 2g( X Y, Z) = Xg(Y, Z) + Y g(z, X) Zg(X, Y ) +g([x, Y ], Z) + g([z, X], Y ) + g(x, [Z, Y ]).,. 5.2, G/{e}. G, reductive g = {0} g. 5.6 g, G.,. 5.7 : g g g Levi-Civita : 2 X Y, Z = [X, Y ], Z + [Z, X], Y + X, [Z, Y ]. Levi-Civita,., U : g g g : 2 U(X, Y ), Z = [Z, X], Y + X, [Z, Y ]. U. Levi-Civita X Y = (1/2)[X, Y ] + U(X, Y ).

27 R(X, Y )Z := X Y Z + Y X Z + [X,Y ] Z. 5.9 Ric(X, Y ) := R(X, E i )Y, E i Ricci. {E i } g. Ricci σ g 2, {X, Y } σ. K σ := R(X, Y )X, Y σ. σ. 5.3 RH RH 2 := {z C Im(z) > 0} SL 2 (R). G, RH 2 = G/{e} : {( ) } e x y G := 0 e x x, y R. G, : {( ) x y g := 0 x {A, X} : A := 1 2 ( } x, y R. ) ( 0 1, X := 0 0, bracket [A, X] = X. g, c > 0, ; ). A, A 1/c := 1/c 2, A, X 1/c := 0, X, X 1/c := g bracket : [A, X] c := cx., f : (g, [, ],, 1/c ) (g, [, ] c,, ) f(a) = ca, f(x) = X, f.,, bracket.,.

28 (g, [, ] c,, ), : (1) U(A, A) = 0, U(A, X) = (c/2)x, U(X, X) = ca. (2) A A = 0, A X = 0, X A = cx, X X = ca. U, (g, [, ] c,, ), : (1) R(A, X)A = c 2 X. (2) R(A, X)X = c 2 A. R(X, Y )Z = R(Y, X)Z, (g, [, ] c,, ), : (1) Ric(X, Y ) = c 2 X, Y. (2) σ := g, K σ = c 2. (1), Ricci Einstein. (2), g := span R {A, X 1,..., X n 1 }, {A, X 1,..., X n 1 }, bracket : [A, X i ] := cx i, [X i, X j ] := 0. (g, [, ],, ).,, (g, [, ],, ), : (1) U(A, A) = 0, U(A, X i ) = (c/2)x i, U(X i, X j ) = δ ij ca. (2) A A = 0, A X i = 0, Xi A = cx i, Xi X j = δ ij ca (g, [, ],, ), : (1) R(A, X i )A = c 2 X i.

29 26 5 (2) R(A, X i )X j = δ ij c 2 A. (3) R(X i, X j )A = 0. (4) R(X i, X j )X k = δ jk c 2 X i δ ik c 2 X j.,, : 5.19 (g, [, ],, ), : (1) Ric(X, Y ) = c 2 (n 1) X, Y. (2) σ, K σ = c 2., 2 σ., σ : 5.20 f : g g., : X Y = f(x) f(y ), R(X, Y )Z = R(f(X), f(y ))f(z). Aut(g) O(g,, ),., O(n 1) g := span R {A, X, Y, X}, {A, X, Y, Z}, bracket : [A, X] := (1/2)X, [A, Y ] := (1/2)Y, [A, Z] = Z, [X, Y ] := Z bracket 0. Ricci,.., X, Y, Z, 3 Heisenberg. Heisenberg,.

30 27 [A] A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces. Translated from the 1999 Greek original and revised by the author. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, xvi+141 pp. [BCO] J. Berndt, S. Console, C. Olmos, Submanifolds and holonomy. Chapman & Hall/CRC Research Notes in Mathematics 434, Chapman & Hall/CRC, Boca Raton, FL, 2003, x+336 pp. [B] A.L. Besse, Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag, Berlin, xii+510 pp. [H] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Corrected reprint of the 1978 original. Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI, xxvi+641 pp. [KN1] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. I. Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, xii+329 pp. [KN2] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, xvi+468 pp. [KO],,., [M],., [O1], ( )., [O2], ( )., [W] F. Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, ix+272 pp.

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

IA [email protected] Last updated: January,......................................................................................................................................................................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) [email protected]

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:[email protected] 0 0 1 1.1 G G1 G a, b,

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, [email protected], http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, [email protected] TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

2011 (2011/02/08) 1 7 1.1.................................... 7 1.2..................................... 8 1.3.................................. 9 1.4.................................. 10 1.5..................................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information