等質空間の幾何学入門
|
|
|
- えりか ありたけ
- 7 years ago
- Views:
Transcription
1 2006/12/04 08
2 i, 2006/12/ , 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,.
3 ii :
4 1 1,.,,. :,., G/K.,.,., [KO, 7], [M, 4]. 1.1 :,.,. 1.1 M n (R) n n, : (1) GL n (R) := {g M n (R) det(g) 0} general linear group. (2) O(n) := {g GL n (R) t gg = I n } orthogonal group. (3) SL n (R) := {g GL n (R) det(g) = 1} special linear group. (4) SO(n) := SL n (R) O(n) special orthogonal group.,. O(n), R n GL n (R). 1.2 O(n) = {g GL n (R) x, y R n, gx, gy = x, y }., R n.
5 , M n (C) n n, : (1) GL n (C) := {g M n (C) det(g) 0}. (2) U(n) := {g GL n (C) t gg = I n } unitary group. (3) SL n (C) := {g GL n (C) det(g) = 1}. (4) SU(n) := SL n (C) U(n) special unitary group. 1.4 U(n) = {g GL n (C) x, y C n, gx, gy = x, y }., C n., H. classical group.,., 1.5 H 3 Heisenberg : 1 x z H := 0 1 y x, y, z R Heisenberg H. 1.2 G M.,, g, h G, e G, p, q M. 1.7 Φ : G M M : (g, p) Φ(g, p) =: g.p G M action, : (1) (gh).p = g.(h.p), (2) e.p = p.. g.p = Φ(g, p), g p gp, g.p. G M, G M. 1.8 Φ : GL n (R) R n R n : (g, v) g.v := gv GL n (R) R n. GL n (R) G R n., G M, G G M.,,., :
6 RH 2 := {z C Im(z) > 0}. SL 2 (R) RH 2 : [ Φ : SL 2 (R) RH 2 RH 2 a b : ( c d ], z) az + b cz + d. RH 2., , SL 2 (R) RH 2..,,.,, : 1.11 M, Aut(M) := {f : M M : }.., (1) Φ : G M M, : ϕ : G Aut(M) : g Φ(g, ) Φ(g, ) : p Φ(g, p). (2), ϕ : G Aut(M) : g ϕ g, : Φ : G M M : (g, p) ϕ g (p). ϕ ,.,, Aut(M). Aut(M) M G V ϕ : G GL(V ), representation., G M, G.p := {g.p M g G} G p M orbit. M.,,.
7 , G M transitive, : p, q M, g G : g.p = q. : 1.16 R n R n : R n R n R n : (g, p) g+p.,, : 1.17 G M, o M., p M, g G s.t. g.p = o, G M., : 1.18 n 2. O(n) S n 1., R n 2 O(n), R n 2 O(n), O(n) S n 1., M, M G. G G K, g h : g 1 h K G., G/K := G/ G K coset space. G/K = {gk g G}. K, G/K. M G-, M G.
8 M G-. p M, G p := {g G g.p = p}, : G/G p M : [g] g.p. G p isotropy subgroup G := O(n + 1) S n, {[ ] } 1 G e1 = O(n + 1) α O(n) = O(n). α S n : S n = O(n + 1)/O(n)., p G p : {[ α G en+1 = 1 ] } O(n + 1) α O(n) G e1., G p G q, : G/G p = G/Gq M G-, p, q M. G p G q g G : g 1 G p g = G q. M = G/G p, M (G, G p ),., M (G, G p ) G G/K, G G/K : G G/K G/K : (g, [h]) g.[h] := [gh] RP n, G k (R n ), G k1,...,k l (R n ) : (1) RP n := (R n+1 \ {0})/, v w : c 0 : v = cw. (2) G k (R n ) := {V K n V, dim V = k}. (3) G k1,...,k l (R n ) := {(V k1,..., V kl ) V k1 V kl :, dim V ki = k i } : RP n G 1 (R n+1 ) : [v] Rv.
9 6 1,, GL n (R) G k (R n ) : g.v := {gv v V }. (1) G k (R n ) GL n (R)-, G k (R n ) = GL n (R)/B. {[ ] } B = GL 0 n (R). (2) G k (R n ) O(n)-, G k (R n ) = O(n)/O(k) O(n k). 1.27,.,, RH 2 SL 2 (R) 1.9.., : 1.29 G k (R n ) = G n k (R n ). G k (R n ) = O(n)/O(k) O(n k) G n k (R n ) = O(n)/O(n k) O(k).,., : G k (R n ) G n k (R n ) : V V.
10 7 2 M G/K.., M, G/K, M = G/K,. G/K, G.,. :, +.,.,.,.,.,,., [KO, 5 ], [O2], [W, Chapter 3]. 2.1,,.,. C G Lie group, : (1) G G G : (g, h) gh C -. (2) G G : g g 1 C -. (1), (2) : G G G : (g, h) gh 1 C -.
11 : (1) R n. (2) GL n (R). (3) 3 Heisenberg. R n. GL n (R), M n (R) = R n Heisenberg H, R 3, H.,,., 2.4 SO(2) = S 1., 4, C -., SO(n),.,. 2.5 F : GL n (R) R m C -, G := {g GL n (R) F (g) = 0}., dim Ker(dF ) g = k g G, G k-., rank(jf ) g = n 2 dim Ker(dF ) g = n 2 k., G k. C -,.,. p G, T p G := {ċ(0) c : I M n (R) : C, c(i) G, c(0) = p}. T p M = Ker(dF ) g., dim T p G p, G. 2.6 F g (df ) g, : (df ) g (X) := lim t 0 (1/t)(F (g + tx) F (g)). 2.7 O(n), dim O(n) = n(n 1)/2. T e O(n) = {X M n (R) t X + X = 0}., : O(n).
12 : SL n (R), dim SL n (R) = n : GL n (C), dim GL n (C) = 2n 2., F (g) = 0 F. SL n (R). GL n (C) : GL n (C) GL 2n (R). n = , g R, [, ] : g g g. (g, [, ]) Lie algebra, : (1) [X, Y ] = [Y, X]. (2) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0..,. (g, [, ]), [, ] bracket product. (ii) Jacobi identity. 2.11, [X, Y ] := 0 abelian Lie algebra gl n (R) := M n (R), [X, Y ] := XY Y X.,,. 2.13, [X, Y ] := XY Y X : gl n (R) := M n (R) general linear Lie algebra, o(n) := {X gl n (R) X + t X = 0} orthogonal Lie algebra, sl n (R) := {X gl n (R) tr(x) = 0} special linear Lie algebra., SO(n) := O(n) SL n (R). so(n) := sl n (R) o(n), so(n) = o(n), O(n) SO(n), [X, Y ] := XY Y X : gl n (C) := M n (C), u(n) := {X gl n (C) X + t X = 0} unitary Lie algebra,
13 10 2 sl n (C) := {X gl n (C) tr(x) = 0}, su(n) := sl n (C) u(n). 2.15, 3 Heisenberg : h := 0 x z 0 0 y x, y, z R.,., R n C n,, (1) o(n) = {X gl n (R) v, w R n, Xv, w + v, Xw = 0}. (2) u(n) = {X gl n (C) v, w C n, Xv, w + v, Xw = 0}. 2.3,, G a G, : L a : G G : g ag., L a (dl a )g : T g G T ag G : (dl a )g(v) : C (M) R : ϕ v(ϕ L a )., T G := g G T g G G, dl a : T G T G X : G T G, : L a G G X X T G dl a R n : T G 2.19 R n X := f i. x i, f i
14 2.4 11, R n : (dl a ) g ( x i ) g = ( x i ) a+g G, g, G. X, Y, [X, Y ], G = R n, g = span R { x 1,..., x n }, n : α : g T e G : X X e., g T e G.,. 2.4,.,,, g, g. ϕ : g g, : X, Y g, ϕ([x, Y ]) = [ϕ(x), ϕ(y )]., GL n (R) g, gl n (R). G = GL n (R), M n (R) = R n2, T e G M n (R) = R n2., G g, T e G., : g = T e G = M n (R) = gl n (R)., : ϕ : g gl n (R) : X (X e x ij ) ij., x ij : G R, (i, j)- G. ϕ gl n (R) [X, Y ] = XY Y X G, G H, : (1) G H. (2) G H. (3) (1), (2) H.
15 12 2., i : H G,, i i : H G, di : h g., h di(h)., h g., GL n (R), gl n (R), O(n) o(n). 2.26, O(n). O(n) 2.7, : (1) SL n (R) sl n (R). (2) GL n (C) gl n (C). (3) U(n) u(n). 2.5,.,., G, g X e T e G, 1 c X : R G : s.t. ċ X (0) = X e. c X G, g. exp : g G : X c X (1). : C -,., 0 g : d exp 0 : g T e G : X X e., : 2.31 exp : g G, 0 g e G.,.,,.
16 exp : gl n (R) GL n (R), : exp(a) := e A := k=0 2.33, : A k k!. (1) Be A B 1 = e BAB 1, (2) det e A = e tra, (3) e A+B = e A e B if AB = BA exp : gl n (R) GL n (R),. : X gl n (R), c X (t) := (tx) k /k! c X (0) = X., 1 exp, R R > X o(2), e X SO(2)., G GL n (R), g = {X gl n (R) t R, e tx G}., O(n) o(n) , : (1) SL n (R) sl n (R). (2) GL n (C) gl n (C). (3) U(n) u(n) Heisenberg H, h : 1 x z 0 x z H := 0 1 y x, y, z R, h := 0 0 y x, y, z R :.
17 14 3, G M, G/G p M.,, G/G p M. : G M, G p. G, H, G/H. dim G/H = dim G dim H. M = G/H, H T p M., reductive g = h p.,., [KO, 6 ], [W, Chapter 3] G M C -, G M M : (g, p) g.p C -.,,. 3.2 : (1) GL n (R) R n, (2) O(n + 1) SO(n + 1) S n.
18 ,. 3.3 G a G. G, : (1) L a : G G : g ag. (2) I a : G G : g aga 1 I a. (3) Ad a : g g : X (di a ) e (X)., G g T e G. I Ad,., ϕ : G M : g g.p,. {p}, : 3.4 G M, p M, G p := {g G g.p = p} G. 3.2 G/G p,., G H, G/H. H : 3.5 G, H, π : G G/H. π G/H, H G. G G/H : a G, a.[g] := [ag]. 3.6 G H, G/H : G G/H., G/H., exp, : g = h p p. π exp : p G/H, 0 p U [e] G/H N., (N, (π exp) 1 ) [e]. G : {(gn, (π exp) 1 g 1 )} g G, G/H.
19 G M. ϕ : G/G p M : [g] g.p, G/G p C., M, G G p. 3.8 S 2 = O(3)/O(2), ψ p := (1, 0, 0) : ψ(a, b) := (cos a cos b, sin a cos b, sin b)., : 3.9 dim G/H = dim G dim H., S n = O(n + 1)/O(n) dim O(n + 1) = dim O(n) + n. : dim O(n) = n(n 1)/2. dim O(n) = dim o(n) G k (R n ) = O(n)/O(k) O(n k), : dim G k (R n ) = dim O(n) (dim O(k) + dim O(n k)) = k(n k) G 1,2,...,n 1 (R n ). 3.3 M = G/G p, G p T p M., ϕ : G Aut(M). p M, G p T p M isotropy representation : (dϕ) : G p GL(T p M) : a (dϕ a ) p.,., 1.23., : 3.14 G M, p, p q.
20 3.3 17, 3.15 α : G 1 GL(V ) β : G 2 GL(W ) equivalent, : : ϕ : G 1 G 2 :, F : V W : s.t. α g V V F F W β ϕ(g), : 3.16 O(3) S 2, O(2) R 2.,., 3.3 Ad : G GL(g). Ad H : H GL(g) G/H reductive, : p g : (Ad H )- s.t. g = h p., reductive.,, G/H reductive g = h p., Ad H : H GL(p). : 3.19 O(n + 1) S n, O(n) R n SL 2 (R) H 2, : SO(2) R 2. S 2 = SO(3)/SO(2), SO(2) R 2.,., S 2 H O(n) G k (R n ), : O(k) O(n k) M n k,k (R), (a, b).x := bx t a. M n k,k (R) (k, n k)-. p = T p G k (R n ), dim G k (R n ) = k(n k). W
21 18 4 G M., p M G.p M.,.,,., R 3 SL 3 (R)/SO(3),,. 4.1.,. 4.1 G N. N M G, : G G : s.t. M G -., : G N, p N M := G.p N., G.p := {g.p N g G }. 4.2, : M = G /G p.
22 4.1 19, M = G/H., M N,. G-., : 4.3 α : G M, β : G N. f : M N G-, : α g M M f f N β g g G, : 4.4 S n = O(n + 1)/O(n) R n+1 O(n + 1)-. e 1 S n, S n = O(n + 1).e 1 R n+1.,,,., G- N, G G := O(3) R 3 R 3, : N (a, v) G w R 3, (a, v).w := aw + v., G R 3 : (1) S 2 (r) := {(x, y, z) x 2 + y 2 + z 2 = r 2 }. (2) S 1 (r) R := {(x, y, z) x 2 + y 2 = r 2 }. (3) R 2 := {(x, y, 0)}.. (1) G 1 := O(3), v := (r, 0, 0). (2) G 2 := O(2) {(0, 0, z)}, v := (r, 0, 0). (3) G 3 := {(x, y, 0)} R 3, v := (0, 0, 0). G O(3) R 3,. (a, v) (b, u) = (ab, au + v) R 3,,. G, R 3. 2,. R 3,, G 1, G 2, G 3., G N., G G, G.,.,.
23 S n, O(n + 1) G S n S n 1 (r) (r 0): {( ) } 1 G := α O(n) = O(n). α, r > 0 1. r = 0, G S n S k 1 (r 1 ) S n k 1 (r 2 ) (r1 2 + r2 2 = 1): {( ) } α G := α O(k), β O(n k) = O(k) O(n k). β, r 1 > 0 r 2 > 0 1. r 1 = 0 S n k 1 (1), r 2 = 0 S k 1 (1)., S k S n k = (O(k + 1) O(n k))/(o(k) O(n k 1)).., SL 3 (R)/SO(3)., s-,. 4.9 SL 3 (R)/SO(3), (1) reductive: sl 3 (R) = o(3) p, p := {X sl 3 (R) t X = X}. (2) : a.x := axa 1 (a SO(3), X p). O(3) p. p X, Y := tr( t XY ), p S 4.
24 p a : λ 1 a := λ 2 λ 1, λ 2, λ 3 R.. : 4.11 p a : a := λ 1 λ 2 λ 1 λ 2 λ 3. λ 3 λ 3, X a X X p. O(3) X h X : h X = {Y o(3) [Y, X] = 0}. bracket, : 4.13 X a, (1) λ 1 = λ 2 > λ 3, h X = o(2). (2) λ 1 > λ 2 = λ 3, h X = o(2). (3) λ 1 > λ 2 > λ 3, h X = 0., : 4.14 X a, (1) λ 1 = λ 2 > λ 3, H.X = O(3)/O(2) O(1). (2) λ 1 > λ 2 = λ 3, H.X = O(3)/O(1) O(2). (3) λ 1 > λ 2 > λ 3, H.X = O(3)/O(1) O(1) O(1). (1) (2), G 1 (R 3 ) = RP 2, S 4. Veronese surface. 4.15, G 2 (R 5 ).,,., a, a. h X,.
25 22 5,,.,. :..,. [A], [B]. 5.1 : 5.1 M = G/H reductive, g = h p reductive. p Ad H -, M G-. G/H G- G/H,,. p T o M, G- T o M., : 5.2, M G-., p M, T p M g p : a G, g a.o (X, Y ) = (da) p (X), (da) p (Y ). g p, well-defined, a.o = b.o (da) p (X), (da) p (Y ) = (db) p (X), (db) p (Y ). Ad H -, well-defined.
26 M = G/H reductive. M G-, Ad H. Ad H p., G/H. Shur : 5.4 M = G/H reductive, Ad H., Ad H p, G-. X(M) M. (M, g) : 5.5 : X(M) X(M) X(M) Levi-Civita : 2g( X Y, Z) = Xg(Y, Z) + Y g(z, X) Zg(X, Y ) +g([x, Y ], Z) + g([z, X], Y ) + g(x, [Z, Y ]).,. 5.2, G/{e}. G, reductive g = {0} g. 5.6 g, G.,. 5.7 : g g g Levi-Civita : 2 X Y, Z = [X, Y ], Z + [Z, X], Y + X, [Z, Y ]. Levi-Civita,., U : g g g : 2 U(X, Y ), Z = [Z, X], Y + X, [Z, Y ]. U. Levi-Civita X Y = (1/2)[X, Y ] + U(X, Y ).
27 R(X, Y )Z := X Y Z + Y X Z + [X,Y ] Z. 5.9 Ric(X, Y ) := R(X, E i )Y, E i Ricci. {E i } g. Ricci σ g 2, {X, Y } σ. K σ := R(X, Y )X, Y σ. σ. 5.3 RH RH 2 := {z C Im(z) > 0} SL 2 (R). G, RH 2 = G/{e} : {( ) } e x y G := 0 e x x, y R. G, : {( ) x y g := 0 x {A, X} : A := 1 2 ( } x, y R. ) ( 0 1, X := 0 0, bracket [A, X] = X. g, c > 0, ; ). A, A 1/c := 1/c 2, A, X 1/c := 0, X, X 1/c := g bracket : [A, X] c := cx., f : (g, [, ],, 1/c ) (g, [, ] c,, ) f(a) = ca, f(x) = X, f.,, bracket.,.
28 (g, [, ] c,, ), : (1) U(A, A) = 0, U(A, X) = (c/2)x, U(X, X) = ca. (2) A A = 0, A X = 0, X A = cx, X X = ca. U, (g, [, ] c,, ), : (1) R(A, X)A = c 2 X. (2) R(A, X)X = c 2 A. R(X, Y )Z = R(Y, X)Z, (g, [, ] c,, ), : (1) Ric(X, Y ) = c 2 X, Y. (2) σ := g, K σ = c 2. (1), Ricci Einstein. (2), g := span R {A, X 1,..., X n 1 }, {A, X 1,..., X n 1 }, bracket : [A, X i ] := cx i, [X i, X j ] := 0. (g, [, ],, ).,, (g, [, ],, ), : (1) U(A, A) = 0, U(A, X i ) = (c/2)x i, U(X i, X j ) = δ ij ca. (2) A A = 0, A X i = 0, Xi A = cx i, Xi X j = δ ij ca (g, [, ],, ), : (1) R(A, X i )A = c 2 X i.
29 26 5 (2) R(A, X i )X j = δ ij c 2 A. (3) R(X i, X j )A = 0. (4) R(X i, X j )X k = δ jk c 2 X i δ ik c 2 X j.,, : 5.19 (g, [, ],, ), : (1) Ric(X, Y ) = c 2 (n 1) X, Y. (2) σ, K σ = c 2., 2 σ., σ : 5.20 f : g g., : X Y = f(x) f(y ), R(X, Y )Z = R(f(X), f(y ))f(z). Aut(g) O(g,, ),., O(n 1) g := span R {A, X, Y, X}, {A, X, Y, Z}, bracket : [A, X] := (1/2)X, [A, Y ] := (1/2)Y, [A, Z] = Z, [X, Y ] := Z bracket 0. Ricci,.., X, Y, Z, 3 Heisenberg. Heisenberg,.
30 27 [A] A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces. Translated from the 1999 Greek original and revised by the author. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, xvi+141 pp. [BCO] J. Berndt, S. Console, C. Olmos, Submanifolds and holonomy. Chapman & Hall/CRC Research Notes in Mathematics 434, Chapman & Hall/CRC, Boca Raton, FL, 2003, x+336 pp. [B] A.L. Besse, Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag, Berlin, xii+510 pp. [H] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Corrected reprint of the 1978 original. Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI, xxvi+641 pp. [KN1] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. I. Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, xii+329 pp. [KN2] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, xvi+468 pp. [KO],,., [M],., [O1], ( )., [O2], ( )., [W] F. Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, ix+272 pp.
( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (
( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,
, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n
( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =
1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,
1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =
2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),
1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)
( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c
GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,
A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.
A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,
(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like
() 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
Armstrong culture Web
2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..
( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
IA [email protected] Last updated: January,......................................................................................................................................................................................
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
untitled
1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)
2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1
2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:
. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2
2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) [email protected]
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (
II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:[email protected] 0 0 1 1.1 G G1 G a, b,
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2
1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2
平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (
1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト
https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,
D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y
5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x
A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)
7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =
1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D
1W II K200 : October 6, 2004 Version : 1.2, [email protected], http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, [email protected] TA Talor Jacobian 4 45 25 30 20 K2-1W04-00
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
2011 (2011/02/08) 1 7 1.1.................................... 7 1.2..................................... 8 1.3.................................. 9 1.4.................................. 10 1.5..................................
( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
