QMI_10.dvi

Similar documents
QMI_09.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

chap1.dvi

数学演習:微分方程式

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

IA

i

TOP URL 1

chap03.dvi

Xray.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

B

genron-3

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,




ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

Gmech08.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

08-Note2-web

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

4‐E ) キュリー温度を利用した消磁:熱消磁

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2 x x, y, z x,, z F c : x x x cos y sin z z 8 F F F F F x x x F x x F 9 F c J Fc J Fc x x x y y y cos sin 0 sin cos 0 0 0, J Fc 0 J Fc t x /x J Fc,, z

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


Chap10.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

untitled

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

高等学校学習指導要領

高等学校学習指導要領

Abstract I Griffiths

ssp2_fixed.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

高齢者.indd

振動と波動

85 4

master.dvi


ドキュメント1

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

表紙


1


‘¬”R.qx

Z: Q: R: C: sin 6 5 ζ a, b

Note.tex 2008/09/19( )

( ) ( )

1

Gmech08.dvi

untitled

Q&A(最終版).PDF

8 8 0

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

III,..

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

量子力学A

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

量子力学 問題

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

untitled

01

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

プログラム

数学Ⅱ演習(足助・09夏)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

Transcription:

75 8 8.1 8.1.1 8.1 V 0 > 0 V ) = 0 < a) V 0 a a ) 0 a<) 8.1) a 0 V ) a V 0 8.1: < a 1 a a 2a< 3 1 incident wave reflected wave transmitted wave E E >0 ft) ft) = e iωt ω = Ē h 8.2) ω

76 8 1 1 2 2m 1 k d 2 u) = Eu) 8.3) d2 2mE k = N 8.4) ψ in, t) = Nft) e ik = Ne ik ωt) < a ) 8.5) 1 R ψ ref, t) = Rft) e ik = Re ik+ωt) < a ) 8.6) 3 3 8.3) u) k 3 ψ trans, t) = Tft) e ik = Te ik ωt) a<) 8.7) T 2 2 2 2m d 2 d 2 u) = E V 0 ) u) 8.8) E >V 0 E<V 0 8.1.2 E>V 0 K = 2mE V 0 ) 8.9) ψ barr, t) = ft)ae ik + Be ik ) = Ae ik ωt) + Be ik+ωt) a a ) 8.10)

8.1. 77 8.5), 8.6), 8.7) [ ] ψ 1, t) = e iωt u 1 ) = e iωt Ne ik + Re ik < a ) [ ] ψ 2, t) = e iωt u 2 ) = e iωt Ae ik + Be ik a a ) 8.11) ψ 3, t) = e iωt u 3 ) = e iωt [ Te ik ] a<) N N = a = a Ne ika + Re ika = Ae ika + Be ika ik Ne ika Re ika ) = ik Ae ika Be ika ) Ae ika + Be ika = Te ika 8.12) ik Ae ika Be ika ) = ik T e ika 8.13) 8.12) 2 1 R N 1+ K ) Ae ika + 1 K ) Be ika = 2Ne ika k k 1 K ) Ae ika + 1+ K ) 8.14) Be ika = 2Re ika k k 8.13) 2 3 B A A = 1 1+ k ) Te ik K)a, B = 1 1 k ) Te ik+k)a 8.15) 2 K 2 K 8.15) 8.14) A B N = 1 [ k + K 2 eika e ika k + K k 2K eik K)a + k K e ika K k ] k 2K eik+k)a T 1 = 4kK e2ik K)a[ k + K) 2 k K) 2 e 4iKa] T T N T N = 4kK e 2ik K)a k + K) 2 k K) 2 e 4iKa 8.16) 8.15) 8.14) A B R = 1 [ k K 2 e ika e ika k + K k 2K eik K)a + k + K e ika K k ] k 2K eik+k)a T = k2 K 2 4kK e 2iKa 1 e 4iKa) T

78 8 R N = R T T N R N R N = k2 K 2 )1 e 4iKa )e 2ika k + K) 2 k K) 2 e 4iKa 8.17) 8.1.3 E<V 0 2 E<V 0 E >V 0 8.9) 2mV 0 E) κ = 8.18) E >V 0 ik κ ψ 1 ψ 3 E>V 0 ψ 1, t) = e iωt u 1 ) = e iωt [ Ne ik + Re ik ] < a ) ψ 2, t) = e iωt u 2 ) = e iωt [ Ae κ + Be κ ] a a ) ψ 3, t) = e iωt u 3 ) = e iωt [ Te ik ] a<) = a = a 8.19) Ne ika + Re ika = Ae κa + Be κa ik Ne ika Re ika ) = κ Ae κa Be κa ) 8.20) Ae κa + Be κa = Te ika κ Ae κa Be κa ) = ik T e ika 8.21) 8.20) 8.21) 1+ κ ) ik 1 κ ik Ae κa + ) Ae κa + 1 κ ) Be κa = 2Ne ika ik 1+ κ ) 8.22) Be κa = 2Re ika ik A = 1 2 1+ ik ) Te ika κa, B = 1 1 ik ) Te ika+κa 8.23) κ 2 κ

8.1. 79 8.23) 8.22) A B R T N T N = 4ikκ e 2ika+2κa k iκ) 2 k + iκ) 2, 8.24) e4κa R N = k2 + κ 2 )1 e 4κa )e 2ika k iκ) 2 k + iκ) 2 e 4κa 8.25) 8.1.4 3.25) flu ψ, t) j, t) j, t) = 1 ψ ψ ) i 2m ψ ψ 8.26) 1 ψ 1 j = 1 [ e iωt N e ik + R e ik) e iωt ik) Ne ik Re ik) i 2m e iωt ik) N e ik R e ik) e iωt Ne ik + Re ik)] = k N 2 R 2) = v N 2 R 2) m v = p/m =k/m 3 ψ 3 3 1 v j in = v N 2, j ref = v R 2, j trans = v T 2. 8.27) j I T = trans j in = T 2 j N, I R = ref j in = R 2 N. 8.28) 8.16) 8.17) 8.24) 8.25) E >V 0 I T 2kK e 2ik K)a 2 I T = k + K) 2 k K) 2 e 4iKa 2

80 8 k K E V 0 = 16k 2 K 2 = 16 2mE 2 2mE V 0 ) 2 = 64m2 EE V 0 ) 4 = k + K) 2 k K) 2 cos 4Ka + i k K) 2 sin 4Ka 2 = ) k + K) 2 k K) 2 2 ) cos 4Ka + k K) 2 2 sin 4Ka = k + K) 4 +k K) 4 2k + K) 2 k K) 2 cos 4Ka = k + K) 2 k K) 2) 2 +2k + K) 2 k K) 2 ) 1 cos 4Ka = 4kK) 2 +4k 2 K 2 ) 2 sin 2 2Ka = 64m2 EE V 0 ) 4 + 16m2 V0 2 4 sin 2 2Ka = 16m2 ) 4 4EE V 0 )+V0 2 sin2 2Ka E V 0 E<V 0 4EV 0 E) 4EV I T = 0 E)+V 2 E<V 0 sinh2 κb 0 ) 8.29) 4EE V 0 ) 4EE V 0 )+V0 2 E V sin2 Kb 0 ) I R = V0 2 sinh2 κb V 0 E)+V0 2 sinh2 κb V0 2 sin2 Kb 4EE V 0 )+V0 2 sin2 Kb E<V 0 ) E V 0 ) 8.30) b =2a sinh κb sin Kb sinh κb = e+κb e κb 2mV 0 E) κ =, 8.31) 2 sin Kb = e+ikb e ikb 2mE V 0 ) K =, 8.32) 2i I T + I R = 1 8.33)

8.1. 81 8.29) E/V 0 8.2 1 E = V 0 8.29) 2mV 0 b 2 / 2 4, 16, 36 E<V 0 0 tunnel effect b =2a E V 0 sinh 2 κb κ 2 b 2 = 2mV 0 E)b 2 2 I T 4EV 0 E) 4EV 0 E)+V0 2 2mV 0 E)b 2 2 4 4+ 2mV 0 b2 2 2mV 0 b 2 / 2 =4E = V 0 I T =0.5 1.0 I T 0.8 0.6 0.4 0.2 2mV 0 b 2 h 2 4 16 36 0.0 0 1 2 3 4 E / V 0 8.2: E>V 0 I T =1 I T =1 0 sin Kb =0 Kb = nπ n =1, 2, ) 8.34) b =2a λ =2π/K π

82 8 E nπ) 2 = 1+ V 0 2mV 0 b 2 / 2 n =1, 2, ) 8.35) - Ramsauer-Townsend effect 8.3 E/V 0 =0.5 < a E = V 0 E/V 0 =1.5, 2.0 >a < a E >V 0 8.2 a <<a 8.3: V 0 2a 2mV 0 2a) 2 / =64 E/V 0 =0.5, 1.0, 1.5, 2.0

8.2. 83 8.2 8.4 V 0 > 0 V ) = 0 < a) V 0 a a ) 8.36) 0 a<) < a 1 a a 2a < 3 1 V ) a 0 a V 0 8.4: E 1 3 2 2mE + V 0 ) K = 8.37) V 0 8.29) 8.29) V 0 I T = I R = 4EE + V 0 ) 4EE + V 0 )+V 2 0 sin2 Kb V 2 0 sin2 Kb 4EE + V 0 )+V 2 0 sin2 Kb 8.38) 8.39) 8.5 sin Kb =0 Kb = nπ n =1, 2, ) 8.40) 8.37) 2mV 0 b 2 ) 1+ EV0 = nπ) 2 8.41) 2mV 0 b 2 / =4 4 <π 2 n =1 2mV 0 b 2 / =16 π 2 < 16 < 2π) 2

84 8 1.0 I T 0.8 0.6 0.4 0.2 2mV 0 b 2 h 2 4 16 36 64 0.0 0 1 2 3 4 E / V 0 8.5: n =2 2mV 0 b 2 / =36 π 2 < 36 < 2π) 2 n =2 2mV 0 b 2 / =64 2π) 2 < 64 < 3π) 2 n =3 E/V 0 2mV 0 b 2 / 8.6 8.4 a) E 0 V 0 <E<0 V 0 a V 0 a 2 8.1 b) E<0 E 0 a) V 0 b) 0 0 V 0 8.6: E E 8.7 a <<a)

8.2. 85 8.5 8.7: V 0 2a 2mV 0 2a) 2 / =64 E/V 0 =2.0, 1.0, 0.5, 0.2

86 8 8.3 8.8 Ct) =e iet/ 30 8.8: 2mV 0 2a) 2 / =4 E = V 0