18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Similar documents
1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

Gmech08.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

i


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Gmech08.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0


notekiso1_09.dvi

Gmech08.dvi


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

II 2 II

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


KENZOU

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

i

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

液晶の物理1:連続体理論(弾性,粘性)

応力とひずみ.ppt

Acrobat Distiller, Job 128

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

PowerPoint プレゼンテーション


sec13.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

meiji_resume_1.PDF

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

Quz Quz

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

高等学校学習指導要領

高等学校学習指導要領

Chap11.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

. p.1/14

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

The Physics of Atmospheres CAPTER :

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Xray.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

29


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

30

Note.tex 2008/09/19( )

pdf

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

sin.eps

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

A

Transcription:

r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2) permittivity F 12 1 2 F 21 1 F 12 F21 2 O O 2.1: Coulomb (1) F 12 = F 21 (2) 1 2 > 0 F 12 r 1 r 2 1 2 < 0 17

18 2 F 12 r 2 r 1 (3) Coulomb 2.1 10 km Coulomb M =1.988 10 30 kg F G =6.6742 10 11 (1.988 1030 ) (9.109 10 31 ) (10 10 3 ) 2 =1.21 10 18 [N]. Coulomb F C = 1 4π 8.854 10 12 (1.602 10 19 ) 2 (10 10 3 ) 2 =2.31 10 36 [N] (1.21 10 18 )/(2.31 10 36 ) 5 10 17 10 57

2.2 19 2.2 Coulomb (2.1) F 21 = 2 E 1 (2.3) E 1 = 1 1 r 2 r 1 4πε 0 r 2 r 1 2 r 2 r 1 (2.4) (2.4) E 1 2 1 r 2 r 1 1 electric field (2.3) 1 E 1 2 F 21 1 2 1 E 1 2 Coulomb 2.2: (2.4) (2.3) Coulomb (2.1) Coulomb (2.1) 1 2 (2.4) 2 1 E 1 (2.3) E 1 2 E 1 F 21 2

20 2 k r k ( k =1, 2,,n) k r E k (r) E(r) = n E k (r), E k (r) = k=1 k 4πε 0 r r k 2 r r k r r k. (2.5) ρ(r) v k r k ρ(r k ) v k E(r) = 1 n r r k 4πε 0 r r k 3 ρ(r k ) v k (2.6) k=1 v k 0 n ρ(r ) r E(r) = 1 r r 4πε 0 r r 3 ρ(r )dv. (2.7) dv dx dy dz ε 0 C 2 N 1 m 2 : N m 2 C C 2 m 2 = N C (2.8) dr r r de r r O 2.3:

2.2 21 Dirac δ function k r k ( k =1, 2,,n) n ρ(r )= k δ(r r k ) (2.9) δ(r r) = k=1 r = r 0 r r (2.10) δ(r r)dx dy dz =1, f(r )δ(r r)dx dy dz = f(r) (2.11) (2.9) (2.7) (2.11) (2.5) 2.2 a Q z z P z θ θ +dθ 2πa a sin θ dθ 4πa 2 dq = Q Q sin θ 2πa a sin θ dθ = dθ 4πa2 2 P de = 1 dq 4πε 0 R 2 R P z x y 0 2.4 ϕ z de z = 1 4πε 0 dq R 2 cos ϕ ψ R 2 + r 2 2Rr cos ϕ = a 2 θ a 2 + r 2 2ar cos θ = R 2 cos ϕ R 2 = 1 ( 1 2 Rr + r ) R 2 a2 R 2, sin θ dθ = R r ar dr

22 2 dθ R O a θ r ϕ P de z 2.4: R P P ( Q r+a 1 E z = 16πε 0 a r a r 2 + r ) R 2 a2 Q R 2 r 2 dr = 4πε 0 r 2 r>a ( Q r+a 1 E z = 16πε 0 a r 2 + r ) R 2 a2 R 2 r 2 dr =0 r<a a r

2.3 Gauss 23 2.3 Gauss 2.3.1 E(r) r =(x, y, z) E(x, y, z) = E x (x, y, z) E y (x, y, z) E z (x, y, z) flux, P d d P P n d = n d P E d d = E d = E n d flux of electric force (2.8) N m 2 C 1. n E d 2.5: E E d d ε 0 dψ = ε 0 E d = ε 0 E n d. (2.12)

24 2 d electric flux ε 0 C 2 N 1 m 2 N C 1 ψ : C (2.13) D = ε 0 E (2.14) electric flux density : C m 2 (2.15) dψ = D d = D n d (2.16) 2.3.2 ψ d dψ (2.12) (2.16) ψ = ε 0 E d = D d. (2.17) E (D) d r (2.17) r E(r) =E n, n = r r E E = 4πε 0 r 2 n r r n = r/r

2.3 Gauss 25 d = n d d dψ dψ = ε 0 E d = d (2.18) 4πr2 n n =1 ψ = dψ = 4πr 2 d = 4πr 2 4πr2 = (2.19) r 2 r 2 r (2.18) d dψ dψ = 4π d r 2. d/r 2 2.6 d dω (2.18) dψ = dω. (2.20) 4π d de d θ de d cosθ dω dω 2.6: (2.20) d 2.6 d d E θ d dω dω = d cos θ r 2 d E = /(4πε 0 r 2 ) dψ = ε 0 E d = ε 0 E cos θ d = 4π d cos θ r 2

26 2 (2.20) (2.20) ψ = E d = 4π 4π ψ = dω = 4π = (2.21) 4π 4π (2.19) dω dω d 1 d 2 d 3 dψ 1 = 4π dω, dω dψ 2 = 4π dω, dψ 3 = dω, 4π (2k 1) (2k) dψ 1 +dψ 2 =0, ψ = dψ = 4π (dω dω +dω dω + +dω)= dω = (2.22) 4π dω (2k 1) (2k) ψ = dψ = (dω dω +dω dω + +dω dω ) = 0 (2.23) 4π 0 2.3.3 Gauss n 1, 2,, n E k E k ψ

ψ k ψ = ε 0 = n k=1 E d ψ k = ε 0 n k=1 2.3 Gauss 27 E k d (2.24) ψ k k 0 (2.24) V dv dv ρ ρ dv V Gauss D = ε 0 E ψ = ε 0 E d = k (2.25) ψ = ε 0 E d = ρ(r)dv V ρ V Coulomb Maxwell Coulomb 2.3 a Q Q >0 Gauss Q <0

28 2 2.7 r Gauss a O r P E 2.7: r >a P E r d = n d ε 0 E d = ε 0 E 4πr 2 E r Q Gauss ε 0 E 4πr 2 = Q E = Q 4πε 0 r 2 r <a P Gauss ε 0 E 4πr 2 =0 E =0

2.4 Gauss 29 2.4 Gauss 2.4.1 Gauss Gauss D(r) n(r)d = ρ(r)dv (2.26) n(r) r V 2.8 x, y, z x y z V = x y z V D z y D y z D x x x+ x 2.8: Gauss (2.26) x y z x x + x n x x D n = D x y D y z D z x x n x x D n = D x x D n d = D x (x + x, y, z) y z D x (x, y, z) y z x = D x(x + x, y, z) D x (x, y, z) V x x/ x =1 x y z = V y z [ Dx (x + x, y, z) D D n d = x (x, y, z) + D y(x, y + y, z) D y (x, y, z) x y + D ] z(x, y, z + z) D z (x, y, z) V. z

30 2 V x, y, z 0 V 0 D lim x (x + x, y, z) D x (x, y, z) = D x x 0 x x D n d lim V 0 V = D x x + D y y + D z z (2.27) A V r A n d div A = lim (2.28) V 0 V V A div A A div A = A = A x x + A y y + A z z (2.29) (2.27) (2.29) (2.26) lim V 0 D n d V = div D (2.30) (2.26) (2.26) V V V 0 x, y, z 0 r =(x, y, z ) V 0 ρ(r )dv lim V 0 r V V = ρ(r) (2.31) (2.26) (2.30) (2.31) D = ε 0 E Gauss

2.4 Gauss 31 Gauss div E = ρ ε 0 (2.32) 2.4.2 Gauss Gauss A(r) div A V A n d = V div A dv (2.33) Gauss (2.28) Gauss V 1, V 2 1, 2 V = V 1 + V 2 (2.28) A n d 1 (div A) 1 V 1, A n d 2 (div A) 2 V 2 1 2 V 1 V 2 V A n d (div A) 1 V 1 + (div A) 2 V 2 V V n V 1, V 2,..., V n Gauss n n A n d = lim A n i n d i = lim (div A) i n i V i = div A dv. (2.34) V i=1 i=1