passive passive active 1 ( ) LTP 1 1) 2) 1 1

Similar documents
平成14年度 本態性多種化学物質過敏状態の調査研究 研究報告書

untitled

[1][2] Lorente de No Rall [3][4][5][6] *2 *3 E m I m I m φ ( 1) ( ) SUA, MUA, LFP, ECoG, EEG 1 1) 1 ( ) φ(lfp,ecog) 2) 1 φ ECoG decoding 2 φ 2.1 φ 1)


V1 V2 Baillarger Gennari 4 striate cortex 4B 4C V1 V2 2 V Hubel & Wiesel orientation UC Berkeley Ohzawa 240(beats/min) V1 or

培養神経回路網の長期的観測による

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1


- 2 -


1 (1) (2)

「産業上利用することができる発明」の審査の運用指針(案)

dvi


Ł\”ƒ1

OPA134/2134/4134('98.03)

2009年133巻3号3月号.indb

多摩のかけはしNo98 表1表4色

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

脳の自発揺らぎの数理科学 - その起源と神経情報処理における役割 - 寺前順之介 大阪大学大学院情報科学研究科 u.ac.jp

I II III 28 29


I PD-I-3 VA ICD 2006 NYHA ~ LVEF 35% a ICD SCD-HeFT ICD MADIT- ICD a CABG-Patch ICD EF b MADITø MADIT- MUSTT EPS EPS 19 EPS 5/19 VA PD-I-4 Holter LP f

Triple 2:1 High-Speed Video Multiplexer (Rev. C

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

1

日立ヴォルテージ75_出力.indd

VoltAge21 02

ACtive 010 2

untitled


OPA277/2277/4277 (2000.1)

EP7000取扱説明書

みどり野43号-P01

{x 1 -x 4, x 2 -x 5, x 3 -x 6 }={X, Y, Z} {X, Y, Z} EEC EIC Freeman (4) ANN Artificial Neural Network ANN Freeman mesoscopicscale 2.2 {X, Y, Z} X a (t

かんたん操作ガイド[arrows M02]

かんたん操作ガイド[arrows RM02]



かんたん操作ガイド[arrows M03]




Takeshi Kudo 1, Yukihiro Takahashi 1, Mitsuteru Sato 1, Taishi Yamada 1, Nui Kobayashi 1, Yusuke Sanmiya 1, Tomohiro Inoue 2, H C Stenbaek- Nielsen 3,

Mott散乱によるParity対称性の破れを検証

無印良品のスキンケア

a 2003 s a 16

CdTe γ 02cb059e :

Keysight Technologies スイッチング電源の測定


LP3470 Tiny Power On Reset Circuit (jp)

2017_Eishin_Style_H01

81

main.dvi

MITSUMI Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notificat

89865TVS_JA.fm

2007-Kanai-paper.dvi

研究会プログラム.doc

lecture_rev3

LM2940


FEEL Prod Grap PH_Artwork_P0CAH QSG JP A6_ _Rev.4.indd

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 医療機器の使用に関連した医療事故

(個別のテーマ) 医療処置に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故

MLA8取扱説明書

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

_netsci_hokkaidou_abst

pc910l0nsz_j

Microsoft PowerPoint - masayukiakiyama_ pptx

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

- - i



untitled


29





喀痰吸引

平成18年度「商品先物取引に関する実態調査」報告書

GJG160842_O.QXD

0A_SeibutsuJyoho-RF.ppt

i


Wide Scanner TWAIN Source ユーザーズガイド



Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S


Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

Transcription:

11 8 25 passive passive active 1 ( ) LTP 1 1) 2) 1 1

1997 CA1 12 13 1990 2 K A K 1997 transient 3 transient 4-aminopyridine 4- AP A K A A [ 1 conductivity recording transient 4 ] 2 ( K ) i) A K CA1 A K transient D K delay current A K 5 6 whole cell 2-4 CA1 whole cell 7 300 m 100ms 150mV A K A current A K 2

whole cell A current Na current 10ms 8 A K blocker 4-AP 5 mmol Na current kinetics 4-AP CA1 A K A current ii) A K A current 100ms 9 10ms A current 50ms 200ms A current EPSP modulation iii) EPSC A K blocker 7, Input1 EPSC excitatory post-synaptic current 10 EPSC AMPA A current 20ms EPSC 50ms 200ms 50ms 20ms EPSC A current EPSC amplitude EPSC Time to peak T(1/2) 11 EPSC A current EPSC A K blocker 4-AP EPSC 12 7, Input2 EPSC 13 A current 3

A current Acurrent EPSC 14 Acurrent epsc input1 1 1 4-AP epsc input2 A current whole cell A current A current A current K Q. 100ms natural A current A. LTP Protein kinase C protein kinase A A K modulation tetanus protein kinase A current modulation Q. A. 4-AP 4-AP pre-synaptic K modulation A current 3 A D K A K 4-AP D current Storm et al 1990 A D Hines M. neuron 4

1: 2: Storm et al, 1990 3: Homan et al, 1997 4: Table 7.1 Voltage gated ionic currents in cortical neurons 5: 6: 7: Materials and Methods 8: control, 4-AP, wash 9: interval 10: EPSC 11: EPSC 12: 4-AP EPSC 13: Input2 14: A current epsc input2 5

EPSP A EPSP 600 m EPSP 15 Hodikin-Huxley Hodikin-Huxley 600 m EPSP 16 4-AP A current Dcurrent [ A Spine primary culture A EPSP ] A K D K Hodikin- Huxley 17 Storm whole cell peak conductivity A current 18 D current EPSP EPSP A K D K A K EPSP 19 A D K EPSP D K D K 20 D K A K A K D K A current A K 6

4 2 EPSP A D K EPSP 2 A current D current 21 20 ms EPSP 2 17 g KA =0:03 S=cm 2 g KD =0:05 S=cm 2 A D g KA =0:03 S=cm 2 g KD =0:05 S=cm 2 2 1:1 1 2 ( ) Passive 2 EPSP A K D K 1 EPSP ( 21 ) 1 EPSP A D K 2 EPSP ( ) D A (KA and KD) 1 D 2 A A D 22 A D A D EPSP 1 `Single' EPSP 1 D K (20 ms, 50 ms) 2 2 A K D 100 ms, 200 ms EPSP D 2 D K A K 2 Q. A current D current A. I-V ( 18 ) D current D current 070 mv A current 050 mv 7

070 mv 1 EPSP A current Q. 1 A. 18 EPSP D A current 18 A current EPSP 18 Q. D current A current 2 A current A. 1 EPSP D current Acurrent D current A current EPSP ( 23) g max 1 D current 2 A current Q. 2 EPSP A current EPSP A current EPSP g max 20 A. 8

Q. l h A. Q. 2 EPSP D current D K A current D current A. 18 A current EPSP Q. 1 A K 2 D K A. Q. EPSP A. EPSP 2 passive 070 mv 18 D K 1 EPSP Q. EPSP A K A. EPSP A Q. 21 A current 2 EPSP A current A. EPSP 600 m 9

2 A K 5 EPSP EPSP 20 ( 24) EPSP 20 600 m EPSP EPSP ( 24 ) A D K EPSP g max EPSP ( 24 ) A K 3 D K 20 2 EPSP EPSP 2 Q. 3 A. 3 3 1 2 1 D 2 A K 200 ms D K EPSP 24 2 2 10

15: 16: EPSP 17: Parameters for the conductance of KA and KD channels 18: A-type K channel D-type K channel 19: 20: KA, KD, KA+KD g max 21: 2 EPSP `Passive' `KA' `KD' `KA and KD' 4 22: `KA channels' EPSP interval KA=(KA+ KD) `KD channels' EPSP interval KD=(KA + KD) 23: 20 ms 50 ms 200 ms KA KD KA and KD g max Decrease 4 (= 10 ms 20 ms 40 ms 60ms) 9 11

Q. K A. EPSP 2 20 2 ( 25) Q. A. Q. 2 A. 24 0:03 S=cm 2 0:05 S=cm 2 A current D current D current A current Q. A. 10 ms g max EPEP 5{15 ms g max 0.01{0.04 ( 25) g max 12

6 LTP ES potentiation active dendrite LTP model LTP LTP EPSP 1 ES potentiation (EP potentiation) E EPSP S P population spike LTP EPSP population spike population spike preliminary LTP ( 26) CA3 CA1 EPSP 1 27 MED probe slice 28 1, 2, 3 EPSP 29 A E-1, E-2, E-3 150 m EPSP 29 B E-1 E-3 EPSP 100 Hz 1s LTP 3 EPSP 30 5 E-1 LTP ( ) E-1 EPSP 2.0 E-2 2.2 2.3 E-3 2.5 EPSP 3 ( 31) 3 EPSP LTP 13

Q. A. EPSP 32 NMDA APV AMPA CNQX TTX EPSP Q. 1 A. Q. A current EPSP A. Q. A current D current A. A current 300 m 4 D Q. 4 A. 3 1 Q. Active dendrite A. back propagation 14

back propagation 15

24: KA KD KA+KD 2 g max ( 5ms 0.02 S 15 ms 0.03 S) 20 EPSP 6 25: ` ' KA KD KA+KD g max 3 3 26: `Fig. 1 Brain Slices Hippocampus' 3 27: `Fig. 3 MED system components' 28: `Fig. 4 Hippocampus on MED' (. ) 29: `Fig. 9Simultaneous Recordings from Three Electrodes' 30: `Fig. 10 Dynamical Changes on Evoked Responses' 31: `Fig. 11 Curve Fitting to a Single Exponential Curve' 32: (`Fig. 7 Pharmacological Experiments' A) 16