September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

Similar documents
( ) URL: December 2, 2003

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

スケーリング理論とはなにか? - --尺度を変えて見えること--

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9


ADM-Hamiltonian Cheeger-Gromov 3. Penrose

スライド 1

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Nosé Hoover 1.2 ( 1) (a) (b) 1:

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional


Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

JFE.dvi

tnbp59-21_Web:P2/ky132379509610002944

4/15 No.

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

H.Haken Synergetics 2nd (1978)


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

OTO研究会スライド

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Flavell et al. () 111

PowerPoint Presentation

2 ( ) i

T05_Nd-Fe-B磁石.indd

02[ ]小林(責).indd

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

塗装深み感の要因解析

日立金属技報 Vol.34

chap1_MDpotentials.ppt

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

橡

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

untitled

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

2012専門分科会_new_4.pptx

meiji_resume_1.PDF

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

02-量子力学の復習

鉄鋼協会プレゼン

BH BH BH BH Typeset by FoilTEX 2

nsg02-13/ky045059301600033210

LCC LCC INOUE, Gaku TANSEI, Kiyoteru KIDO, Motohiro IMAMURA, Takahiro LCC 7 LCC Ryanair 1 Ryanair Number of Passengers 2,000,000 1,800,000 1,

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

2005/11/19 THORPEX

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

note4.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義


Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

mains.dvi

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

untitled

ver.1 / c /(13)

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

こんにちは由美子です

技術研究所 研究所報 No.80

「国債の金利推定モデルに関する研究会」報告書

四変数基本対称式の解放

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

A

28

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


浜松医科大学紀要

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

03.Œk’ì

J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

hPa ( ) hPa

Transcription:

mailto:hukusima@issp.u-tokyo.ac.jp September 9, 2002 ( ) [1] and Y. Iba, cond-mat/0207123. [2] H. Takayama and, cond-mat/0205276. Typeset by FoilTEX

Today s Contents Against Temperature Chaos in Spin Glasses Against the against... 2002/09/13 1

... ferromagnetic model below T c Overlap function between two valleys Temperature T c State 1 State 2 T+δT T q 12 = q 21 = m 2 (T ) q 11 = q 22 = +m 2 (T ) Overlap between an equilibrium state at T and T + δt q = ±m(t )m(t + δt ), varying smoothly with T Temperature Chaos The equilibrium states at different temperatures are TOTALLY DIFFERENT. = The overlap q is ZERO 2002/09/13 2

Disordered Systems P (q) = αβ δ(q qαβ ) δ droplet picture, Mean-field picture and more... = No Chaos Free energy NO LEVEL CROSSING A state dominatioin the partition function at T ALSO dominates it at T + δt. Chaotic case Free energy Temperature Temperature chaos as level crossings Temperature 2002/09/13 3

Experiment: Memory and Chaos Effects in Spin Glasses K. Jonason, et al : Phys. Rev. Lett. 81, 3243 (1998). J. Hammann, et al : J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 206 211. rejuvenation T 1 memory T 1 2002/09/13 4

Experiment: Memory and Chaos Effects in Spin Glasses K. Jonason, et al : Phys. Rev. Lett. 81, 3243 (1998). J. Hammann, et al : J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 206 211. rejuvenation T 1 memory T 1 2002/09/13 5

Chaotic Nature of the Spin-Glass Phase A. J. Bray and M. A. Moore: Phys. Rev. Lett. 58, 57 (1987). D. S. Fisher and D. A. Huse: Phys. Rev. B 38, 386 (1988). F Free-energy difference at T F (T ) = E T S ΥL θ θ: stiffness exponent Υ: T dependent stiffness constant Change the temperature to T + δt F (T + δt ) E (T + δt ) S ΥL θ δt S. L Entropy difference of the droplet surface S ±L d s/2 : d s : fractal dimension If d s /2 > θ, F (T + δt ) ΥL θ + δt L d s/2 can CHANGE the sign. = The equilibrium state should change on a length scale L(δT ) δt 1 ds/2 θ. 6

Chaos exponent ζ and Stiffness Exponent θ Chaos exponent: ζ = d s /2 θ > 0 = CHAOS............. Lyapunov exponent Stiffness exponent θ: mean-field picture (mean-field model): θ = 0. short-ranged SG model in three dimensions: θ 0.2. d s /2 (d 1)/2 = Temperature Chaos likely occurs in SG systems. Temperature T c T+δT T 2002/09/13 7

Sensitivity of the Spin Glass order parameter Original Hamiltonial : H 1 [σ] Perturbed Hamiltonial H 2 [τ] = H 1 [τ] + P [τ] total Hamiltonial H[σ, τ] = β 1 (H 1 [σ] + H 2 [τ]) P [τ] = (β 2 /β 1 1)H 1 [τ] : P [τ] = p i τ i P [τ] = p ij J ij τ iτ j r(p ) = σ i τ i 2 H σi aσb i 2 H 1 τi aτ i b 2 H 2 P = 0, H 1 = H 2 r(p = 0) = 1. The spin-glass phase is CHAOTIC, if lim p 0 lim r(p ) < 1. N 2002/09/13 8

Numerical Examinations {m i } q = σ i τ i r. TAP eq. NaiveTAP eq. : F. Ritort, PRB50,6844(1994) J ij : M. NeyNifle, PRB57,492(1998) chaotic : Sales-Yoshino, RPE65, 066131 (2002), (cond-mat/0203371) 9

Against Temperature Chaos... I. Kondor, J. Phys. A 22, L163 (1989) On chaos in spin glass zero-th loop order one loop : I. Kondor and A. Végsõ, J. Phys. A 26 L641 (1993). A. Billoire and E. Marinari, J. Phys. A 33, L265 (2000), Evidences Against Temperature Chaos in Mean Field and Realistic Spin Glasses T. Rizzo, J. Phys. A 34, 5531 (2001), Against Choas in Temperature in Mean-Field Spin Glass Models. R. Mulet, A. Pagnani, and G. Parisi, Phys. Rev. B 63, 184438 (2001), Against temperature chaos in naive Thouless-Anderson-Palmer equations A. Billoire and E. Marinari, cond-mat/0202473, Overlap Among States at Different Temperatures in the SK Model. 10

Our strategy: Eigenmode Analysis of susceptibility matrix χ ij = 2 F ({h i }) h i h j = h=0 S j h i = β S i S j h=0 O(N) 4 SG O(N) 11

The first eigenvector of a sample with N = 64 2 T/J = 1.8 T/J = 0.4 12

4d ± J Ising EA Model using the dual trick method r T0 ( T, L) = F (L/L ovl ) with r T0 ( T ) i e(t 0) L ovl = T 1/ζ T0)ei (1) (T0+ T) r( T)= 1 N iei (1) ( 1 N T 0 /J=1.0=0.5T c i e (T 0+ T ) i T=T T 0 L=4 6 8 10 Tc/J=2.0 ) r( T,L T 0 /J=1.0=0.5T c ζ=1.3(1) L T 1/ζ L=4 6 8 10 (L ) r( T ) 0 = ( ) 2002/09/13 13

4d ± J Ising EA Model using the dual trick method Extensive r T0 ( T, L) = F (L/L ovl ) with L ovl = T 1/ζ... ζ 1.3 (M. Ney-Nifle,PRB57, 492(1998)) r1 and r2 factor L T 1/ζ 14

r( T ) T = 0 1 Bray-Moore L Entropy gain p T Ld s/2 ΥL θ with L ovl = (Υ/ T ) 1/ζ = (L/L ovl ) ζ r O(1) r 1 TL ζ (L/L ovl ) ζ L ζ T linear OK r 1 r p TL ζ 15

rejuvenation rejuvenation χ J. Hammann, et al : J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 206 211. 16

cumulative memory effect MC simulations rejuvenation cumulative memory effect: (a) (Komori-Yoshino-Takayama, ω;t;tw1) χ ~ [T2,T1](τ t w1 =256 (eff) t w1 =824 t2) χ ~ i( t,t ~ Kmori-Yoshino-Takayama : t 2 J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 228 237.... MC J. Phys. Soc. Jpn. 66 Suppl. A (2000)355) SG R[T2,T1 ](t;t w1) 4 3 2 1 (a) 10 100 1000 10000 100000 t,t ~ T 1 =0.8 T 2 =0.6 17

L SG t w SG t L t W L L 1 > L 2 T 1 > T 2 t 1 < ( ) t 2 T 1 > T 2 Effective time T 1 t 1 T 2 t 2 length scale L[t] L[t] time scale > T 2 T 1 T 2 18

cumulative chaos crossover Overlap Length L ovlp = (δt ) 1/ζ Twin experimets: Jönsson-Yoshino-Nordblad, PRL89,(2002)097201. L ovlp T 2 large Length chaotic Length L ovlp small cumulative Τ Length T 1 L[t] Overlap length AgMn 1/ζ 2.6 L ovlp Leff/L T L Ti (t w )/L T 2002/09/13 19

Effective time : t eff T 1 t w = T 2 0.046 w (MC Simulation) ( ) 0.044 0.042 R 1 = L(t w, T 1 ) R 2 = L(t eff w, T 2) 0.04 L(t, T ) T t 0.034 Komori-Yoshino-Takayama(1999) χ"(t;ω) Takayama-Hukushima;cond-mat/0205276 0.048 0.038 0.036 T 1 =0.7 T 2 =0.5 ω 1 =64,t w1 =512 0 5000 10000 15000 20000 t t sh1 =0 t sh1 =2600 512 t sh1 =3300 512 t sh1 =4000 512 R 1 = R 2 ( )cumulative memory chaos regime t w R 2 = L ovlp ( T 2 T 1 ) 2002/09/13 20

our MC Results Takayama-Hukushima;cond-mat/0205276,R2 eff R1 2.2 2 1.8 1.6 0.7 0.6 0.6 0.7 0.6 0.5 0.5 0.6 0.5 0.4 0.4 0.5 0.7 0.5 0.5 0.7 0.6 0.4 0.7 0.4 0.4 0.7 ovlp RT2/L 0.4 0.7 0.5 0.7 0.6 0.7 0.5 0.4 0.6 0.4 0.7 0.4 0.7 0.5 0.7 0.6 1/ζ~1.2 1.4 1.2 1.2 1.4 1.6 1.8 2 2.2 R 1,R 2 eff T = 0.3 t w R 1 = R 2 1/ζ 1.0 R T1 /L ovlp + cumulative + cumulative 21

Summary ζ L T1 (t w ) L ovlp : cumulative memory L T1 (t w ) L ovlp : cumulative L T1 (t w ) L ovlp : chaotic behavior rejuvenation? 22