スライド タイトルなし

Similar documents
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

main.dvi

1 2 2 (Dielecrics) Maxwell ( ) D H

,,..,. 1

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

DaisukeSatow.key

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

スライド 1

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

500 6 LHC ALICE ( 25 ) µsec MeV QGP

Kaluza-Klein(KK) SO(11) KK 1 2 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

TOP URL 1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

GJG160842_O.QXD

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

0406_total.pdf

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

I II III IV V

PowerPoint Presentation

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

第86回日本感染症学会総会学術集会後抄録(I)

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

rcnp01may-2

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

nenmatsu5c19_web.key

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

TeV b,c,τ KEK/ ) ICEPP

SUSY DWs

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Electron Ion Collider と ILC-N 宮地義之 山形大学

LLG-R8.Nisus.pdf

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

QCD ( ), ( ) 8 23 Typeset by FoilTEX

総研大恒星進化概要.dvi

Mott散乱によるParity対称性の破れを検証


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Z: Q: R: C: sin 6 5 ζ a, b




untitled

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

tnbp59-21_Web:P2/ky132379509610002944

gr09.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

研修コーナー

パーキンソン病治療ガイドライン2002

arxiv: v1(astro-ph.co)

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

輻射の量子論、選択則、禁制線、許容線

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

ヒッグスの発見 2012年ヒッグス粒子 だと思われる 新粒子が LHC 実験によって 発見されました LHC 加速器の周の長さ 27km! 山手線は 35km 陽子と陽子を反対方向に加速してぶつけて新粒子を探す 陽子 陽子 衝突際のエネルギーはそれぞれの陽子を 1.5V の乾電池を約 2,500,0

nakayama.key

pptx

1

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

本文/目次(裏白)

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Transcription:

006 8

(g cm -3 ) 1 ~10-8 cm ~10-1 cm 10 14 (n) 10 15 ~10-13 cm (p) (q) RGB uds...

(contd.) 0 ~ fm np nn,pp

(contd.) 1 GeV 100 GeV 1 TeV RI FAIR GSI RHIC BNL LHC CERN

(contd.) T < 9 ~ 10 K

(contd.) (k B T «E F ) (E «U F int ) (mc» E F ) vs. (mc «E F ) 3 He ~10 11-15 g cm -3 > ~ 10 15 g cm -3 < ~ 10 4 cm -3 ~0.1 g cm -3 < ~10 MeV < ~100 MeV < ~ 100 K < ~1 K relativity mild extreme none none K

(condt.) ( ) 150 MeV 0 RHIC SPS 1 GeV GSI??? SC CFL K?

Ref. 57 (00) 883. n s ~ (µ / g n s ) 1/ SC

/µ BEC ~ s m µ BCS (CFL,SC,...) m s /µ (µ e /µ )

(contd.) : 4π g = (33 Nf)ln( µ / Λ Ref. Barrois, NPB 19 (1977) 390. Bailin & Love, Phys. Rep. 107 (1984) 35. µ =10 15 GeV (GUT scale) g~1/ ~g µ «~µ QCD ) «1 Quark Color a Color b (a) Gluon (color α) RG GR, GB BG, BR RB ee Color b Color a (b) BCS

(condt.) Ref. Son, PRD 59 (1999) 094019. ultrarelativistic plasma v F /c RPA For p 0 «p «µ, D αβ µν ( p) p δ αβ P iπ m T µν D p 0 4p δ p αβ P L µν + m D, m D N f g 18π µ quarks (T=0) BCS 1 1 ln = 3π ln = Λ UN g µ g UV F 5ln g +L D

(condt.) Ref. Pisarski & Rischke, PRL 83 (1999) 37. U A (1) J P =0 - (<q T Cq>) J P =0 + (<q Τ Cγ 5 q>)

(contd.) µ ~1-3 GeV T c ~ 10-100 MeV (» T Neutron Star ) u,d SC S=L=I=0, Rapp et al., PRL 83(1998)53. Quark Color a Left-handed Gluon cloud Color b (a) Right-handed Color b Left-handed Color a (b) Right-handed BCS Alford et al., PLB 4(1998)47. UV!

(contd.) Two optimal states determined from energy minimization 1. -flavor color superconducting (SC) state Gapped quarks: two colors and two flavors ( anisotropic ) Gluo-electromagnetic properties: Long wavelength gluons SC condensate at T=0 3 types: propagating 5 types: screened. Color-flavor locked (CFL) state. Gapped quarks: three colors and three flavors ( isotropic ) Gluo-electromagnetic properties: Long wavelength gluons CFL condensate at T=0 8 types: screened Cf. The CFL state is more favorable in the weak coupling limit.

(condt.) Ref. Iwasaki & Iwado, PLB 350 (1995) 163. Iida & Baym, PRD 63 (001) 074018. where N ab N N = RR ab = N GG = N BB = 0 for a b i= u, d, s V d 3 x ψ, ai ( x) γ 0 ψ bi ( x) SC Τ=0 1 0 k F k

(contd.) m uds =0 Small s quark mass sets in. m s 0 u,d,s k F u = k F d = k F s δµ = q µ i with i e δk 3ms µ e =, q 4µ u s 3 = m s F =, 3 µ q d, s = 1 3 d u s k F d > k F u > k F s Electric neutrality and weak equilibrium µ d µ s µ e µ u

(contd.) k F i k F j k Ref. Iida & Baym, PRD 63 (001) 074018; Iida et al. PRL 93 (004) 13001 m uds =0 T Normal: ud ds us CFL: ud ds us m s 0 T Normal: ud ds us SC: ud ds us dsc: ud ds us mcfl: ud ds us k F u = k F d = k F s k F d > k F u > k F s

(contd.) m s =150 MeV ud us ds Ref. Fukushima, hep-ph/051099.

(contd.) T=0 k k k vs. k F i j k j F vs. k F i k j k j F F vs. k F i k j k F j F m s»µ BCS Ref. Sarma, Phys. Chem. Solid 4 (1963) 109. µ δµ = BCS Ref. Müther & Sedrakian, PRD 67 (003) 08504. d µ u µ e δµ = E p) = µ d + µ p u ( + δµ Sarma 0. (µ/3) SC 0.3(µ/3)

(contd.) U(1), SU(3) Chromomagnetic instability LOFF Sarma instability Density-wave instability? BCS-normal

(contd.) m s =150 MeV us J α = ( m α M ) A α, ( m α M ) < 0 Ref. Fukushima, hep-ph/051099.

(contd.) m s»µ us Ref. Kiriyama, hep-ph/0608109. J α α M α M = ( m ) A, ( m ) < 0, α = α 4,5,6,7

(contd.) m s»µ, T=0 Debye screening length d quarks u quarks SC Normal electrons _ N + + SC + + Electrons nearly uniform throughout the system k k F d -ga α=4 k F u Ref. Iida & Fukushima,

(contd.) energy landscape BCS LOFF BCS-normal... Sarma Forbes et al., Kitazawa et al. LOFF : gluonic phases Gorbar et al. meson supercurrent Schäfer et al. baryon supercurrent Hong, Huang, Kryjevski LOFF Rajagopal et al., Giannakis et al., Casalbuoni et al. BEC Abuki et al., Nawa et al.

(e, ions) (n,p,e,µ,...) (u,d,s,e,µ) γ,ν

( ) (R) (M) UV ~1- R, ~0.4-1M e GM/Rc ~ 0.0001 <~10 8 g cm -3 UV ~10 km, ~1.4M n, (p, e, µ, Σ, Λ,...) GM/Rc ~ 0.4 ~10 15 g cm -3 ν <~10 km, <~M q, (e) GM/Rc <~ 0.6 ~10 15 g cm -3 ν R 70 km, M 10 33 g GM/Rc ~ 0.000004 ~100 g cm -3 B P radiative, ions convective <~10 4 K <~10 8 G > 1 hour ~0.1-8 M conductive, (ν) ~ 1 s e, µ, n radiative <~10 6 K ~10 8-10 15 G ~10-3 -10 3 s ~8-40 M ν, conductive ~subms e, q ( radiative) <~10 6 K??? ν, conductive pp chain e, ions convective ~6000 K <~000 G ~ 30 days radiative, (ν)

(contd.) CFL SU(3) c+f U(1) B SC U(1) em Cf. 10 19 G Ref. Iida & Baym, PRD 66 (00) 014015. Iida, PRD 71 (005) 054011.

(contd.) I NM SC NM SC NM SC NM B=HC B<HC (partial Meissner screening) II Lattice of magnetic vortices SC SC SC SC B~HC1 B<HC (partial Meissner screening)

(contd.) LOFF CFL LOFF Alford et al. LOFF Ruggieri et al.

energy landscape BCS LOFF BCS-normal...