Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ""

Transcription

1 KamLAND

2

3

4 (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ

5 KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe νe) <.8-4 (9% C.L.) kton-day ( )

6 ν e 1. cm - s -1 (9% C.L.) (E ν > 19.3 MeV) for constant SN rate model Super-Kaimiokande SK νe Reactor νe 8 B solar νe hep νe Atmospheric νe KamLAND

7 ν e β : νe + p e + + n γ e + e - γ : e + + e - γ Eprompt = E ν - Tn MeV ν e p n μsec σtot () = π /me 5 f R τn γ Ee () pe () τn = ±.8 sec d cm ] 4 Cross Section [! Cross Section 5 15 : n + p d + γ Edelayed =. MeV.% Neutrino Energy [MeV]

8 νe 7.5 < Eprompt < 3. MeV 1.8 < Edelayed <.6 MeV.5 < ΔT <. µsec ΔR < 16 cm Rprompt, Rdelayed < 6 cm µ (ΔQ> 6 p.e.) sec veto µ (ΔQ< 6 p.e.) Events/.1MeV 3 Reactor e w/ oscillation Geo e 8 B = 8 e B e (.8 SRN (LL model) -4 ) 3m sec veto e - ν µ 1 C µ - τ=.μsec X µ 1-1 ν µ ν e β,γ 3m E prompt [MeV] 7.5MeV

9 Li 4. 5.

10 1. NUANCE ( ) Geant4 NC ν(ν) + 1 C ν(ν) + n + 11 C CC ν(ν) + 1 C l - (l + ) + n + + X ν + p l + + n -1 [m sec sr GeV] µ µ e e NUANCE Fermi gas model νe, ν µ, νe, ν µ / π CH(.78g/cm 3 ) 9m : % M.Honda, et al., ʼ neutrino energy [GeV] full mixing 5% (CC )

11 .6% L.A.Ahrens, et al., (ʼ87) Q <.45 (GeV/c) 71.7% σ =. (flux)+.6 ( ) Events/.5(GeV/c) % = 8.7% cm /nucleon] -38 [ nc free proton nc bound neutron nc bound proton q [(GeV/c) ] [MeV] E µ 6

12 5% E <.4 GeV 18.3% flux : % : 5% : 5% 59.4% Event/.5GeV % cm /nucleon] cc free proton cc bound neutron cc bound proton [ Energy [GeV] E µ [MeV] 6

13 Events/.5MeV 14 /ndf =.3 / Probability = 17.% f(e) = exp(-e / 19.76) /ndf = 9.8 / 7 Probability = 19.8% f(e) = -.9 E +.7 KamLAND σ = 7/7= 19.% E prompt [MeV] (5kton-day) NUANCE σ = 8.7% 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 11.9 ± ± ± ±.3 1

14 . μ μ MUSIC/MUSUN (3 ) Geant4 n n p Events/7MeV Measurement MC (tracked muon) MC (untracked muon) Visible Energy (MeV) (5kton-day) 3 Events/m Prompt Event Radius (cm) 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 1. ± 1.. ± Measurement MC (tracked muon) MC (untracked muon)

15 3. 9 Li 9 Li μ 6 dq > events /.1 sec p.e. μ 9 Li / ndf 3.49 / He/ Li Li ± 33.3 Offset 5.79 ±.84 β n τ = 57. msec, Q = 13.6 MeV, β - + n 6 dq < events /.1 sec time difference from muon [sec] p.e., dl < 3 m μ 3m 9 Li / ndf 1.43 / He/ Li Li ± 6. Offset ± 1.59 μ ± 33.3 sec veto.4 ±.1 μ ± 6. 3m sec veto 14.9 ± MeV 19.7% 3. ±.3 events / bin time difference from muon [sec] m 6 dq < p.e 95.8 % within 3m 95.8% distance from muon track [cm]

16 4. νe neutrino spectrum [/fission/mev] νe 35 U U Pu Pu Events/.1MeV 3 1 KamLAND neutrino energy [MeV] 8MeV Double Chooz (hep-ex/453) E prompt [MeV] 1.5 ±.5

17 5. Events/.MeV MeV 3MeV.sec 1.sec >.161 Events/.4sec > E prompt [MeV] T [sec]. < ΔT < 1. sec 1/. ±.1

18 7.5 Eprompt 15. MeV 7.5 Eprompt 3. MeV 11.9 ± ± ± ±.3 1. ± 1.. ±. 9 Li 3. ±.3 3. ± ± ±.5. ±.1. ± ± ± 8.3

19 7.5 < Eprompt < 15. MeV 19.3 ± 3.7 ( ) σ σ = Confidence interval P (N) = σ = dσ de ν SdE ν SdE ν cm ( νe) ={ cm ( 8 Bνe) 1 (ν Nexp ) πσ e σ ν N (N unknown σ sys ) +(N BG σ BG ) BPS8(GS) 8 Bνe W.T.Winter, et al.(ʼ6) νe Lawrence Livermore group (T.Totani, et al., ʼ98) N! e ν dν Nunknown : 8 Bνe or νe ( ) NBG (19.3 ) N exp = Nunknown + NBG σsys =.% σbg = 19.%

20 Events/MeV 1 8 B (9% C.L.).3 events SRN (9% C.L.) 11. events Reactor 1.5 events 9 Li 3. events Neutral Current 11.9 events Charged Current 1.6 events 8 Fast Neutron 1. events Accidental. events 6 NUANCE KamLAND E prompt [MeV] (9%C.L.) 8 Bνe KamLANDʼ4 νe Flux [cm - s -1 ] νe νe

21 kton-day KamLAND νe 19.3 ± 3.7 (7.5 < Eprompt < 15. MeV) 37.6 ± 8.3 (7.5 < Eprompt < 3. MeV) ν e νe (9% C.L.) 16 cm - s -1 (9% C.L.) NC

NeutronDetection-Shimizu

NeutronDetection-Shimizu α-be Lecture 34 MP501 Kissick 2014 https://www.medphysics.wisc.edu 4M n M X T X = T n (M n + M X ) 2 cos2 S.F Mughabghab, M. Divadeenam and N.E. Holden, Academic Press (1981) 10 B+n! 7 Li + 7 Li + 6 Li

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

nakajima_

nakajima_ SK-Gd (ICRR) 30 2018 12 21 SK-Gd SK!2 !3 ls of SK Solar ν measurement rvation of day-night asymmetry far, B8, 2.5σ indication Hep reported at NEUTRINO2014) nalizing all SK-IV data very of the transition

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

Super- Kamiokande SK- I SK- II SK- III SK- IV ID PMTs (40% coverage) Energ

Super- Kamiokande SK- I SK- II SK- III SK- IV ID PMTs (40% coverage) Energ 3 SK future ν ν Gd Super- Kamiokande 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 SK- I SK- II SK- III SK- IV 11146 ID PMTs (40% coverage) Energy Threshold (total electron energy)

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2 T2K 実験における新しい外挿法に よるニュートリノフラックス予測 日本物理理学会第 67 回年年次 大会 ( 関 西学院 大学 西宮上ケ原キャンパス ) 京 大理理, 高エ研 A 村上明, 市川温 子, 久保 一, 坂下健 A, 鈴鈴 木研 人, 中平武 A, 中家剛, 丸 山和純 A, 他 T2K Collaboration 1 目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

09_organal2

09_organal2 4. (1) (a) I = 1/2 (I = 1/2) I 0 p ( ), n () I = 0 (p + n) I = (1/2, 3/2, 5/2 ) p ( ), n () I = (1, 2, 3 ) (b) (m) (I = 1/2) m = +1/2, 1/2 (I = 1/2) m = +1/2, 1/2 I m = +I, +(I 1), +(I 2) (I 1), I ( )

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

半導体メモリデバイスに対する陽子入射シングル イベントアップセット断面積の計算

半導体メモリデバイスに対する陽子入射シングル イベントアップセット断面積の計算 RCNP April 3-5, 2002 Email: watanabe@aees.kyushu-u.ac.jp Centimeter Centimeter - - Scale Scale (LSI (LSI chips) chips) Micron -Scale Micron -Scale (Charge transport) (Charge transport) Femtometer -Scale

More information

Strangeness spin in the proton studied with neutrino scattering

Strangeness spin in the proton studied with neutrino scattering 研究会 2008年4月7 8日 理研 Neutrino Scattering Experiment, Tokyo Tech Proton Spin Problem and Δs SU(3) flavor symmetry Nucleon Form Factors Neutrino Scattering and Δs E734, MiniBooNE, SciBooNE Model calculation

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

05/09/2009

05/09/2009 05/09/2009 * DoubleChooz, RENO, Dayabay * ν ν "(# e + p $ e + + n) ν ν ν ν are produced in β-decays of fission products. ~ 6!10 20 " e / s / reactor ν E " ~ 4 +4 #2 MeV 090314 F.Suekane, TIPP09 3 ( ) $

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

tanida

tanida J-PARC 2008 6 25 u (d) p(uud), n(udd) 6 u c t d s b Λ=(uds), Σ + (uus), Ξ 0 =(uss),... s A: Z: Λ: Λ, Σ, Ξ 1. 3p + 3n + 1Λ 7 Λ Li 2. 2p + 2n + 2Λ 6 ΛΛ He 3. 1p + 2n + 1Ξ 0 2p + 1n + 1Ξ 4 Ξ H Chart [SU(3)

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図 νe SK 295km J-PARC θ13 の測定 (感度 sin 2θ13>0.006) P(νμ νe) = s223sin22θ13sin2(

T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図 νe SK 295km J-PARC θ13 の測定 (感度 sin 2θ13>0.006) P(νμ νe) = s223sin22θ13sin2( Of-Axis前置検出器を用いたT2K実験 ニュートリノビーム測定 2011/03/26 関西高エネルギー発表会, 大阪大学 矢野孝臣 原俊雄 鈴木州 青木茂樹A 家城佳B 南野彰宏B 中 家剛B 他T2K-SMRDグループ 神大理 神大発A 京大理B 1 T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図

More information

PowerPoint Presentation

PowerPoint Presentation KEK I. II. a. BESS b. c. d. III. BESS-Polar IV. Introduction D p GeV (

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション T2K 実験の最新結果と 系統誤差 5% への道 木河達也 ( 京都大学 ) for the T2K collaboration 新学術領域 ニュートリノフロンティアの融合と進化 研究会 2013 2013 年 12 月 7 日 T2K 実験 2 J-PARC でほぼ純粋な ν μ ビームを生成 生成点直後の前置検出器と 295km 離れたスーパーカミオカンデでニュートリノを観測 ニュートリノ振動の精密測定

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

Microsoft Word - 4NMR2.doc

Microsoft Word - 4NMR2.doc 4 NMR 4.1 Zeeman 1, 13 C, 19 F, 31 P NMR 1 13 C 1/2 4.1 7%&'- 89:;'

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

SC210301 Ł\†EŒÚ M-KL.ec6

SC210301 Ł\†EŒÚ M-KL.ec6 30 36 01 02 07 08 05 95 11 94 11 97 13 91 13 9T 14 15 15 96 16 BE 16 BF 16 BG 17 CL 17 00 17 17 17 1 180 28 28 180 2 180 181 60 180 180 90 32 180 30 15 29 29 30 14 3 15 30 29 29 14 30 14 19 19 30 30 22

More information

Hasegawa_JPS_v6

Hasegawa_JPS_v6 ATLAS W, トップクォークの相互作用と W ボゾン偏極 トップ(t)クォーク 素粒子中で最大質量(73.3.9 GeV) 崩壊事象中に New physics の寄与が期待できる ハドロン化の前に崩壊 素粒子として性質を検証できる t SM V-A interaction + NP SM + New Physics SM+NP Contribution from NP Longitudinal

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

7-1yamazaki.pptx

7-1yamazaki.pptx Suzaku/ASTRO-H Suzaku/ASTRO-H 1. Vela ( Watchman ) (1967 1979): GRB (1969) 2. GINGA (1987 1991): X-ray counterpart GRB (galactic) X-ray burst? 3. BATSE (1991 2000): Galactic origin models!!! 4. BeppoSAX

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e + MEG ( ) 2011 9 10 MEG μ + e + γ ( ) (1.2 10-11 MEGA) = (BSM) MEG μ + e + γ ( : a few 10-13 ) 180 γ μ + e + μ eγ @MEG DC μ + (590MeV 1.3MW @ ) γ: e + : MEG (900L) (VUV) 846 PMT : PMT : PMT PMT (DRS4) particle

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

宣伝 もくじ ニュートリノグループ T2K実験 2011年のT2K実験結果 T2Kのどこを貢献したか T2Kの目標達成のために 将来計画のための研究 まとめ NEUTRINO2012 Kyoto 2

宣伝 もくじ ニュートリノグループ T2K実験 2011年のT2K実験結果 T2Kのどこを貢献したか T2Kの目標達成のために 将来計画のための研究 まとめ NEUTRINO2012 Kyoto 2 高エネルギー物理学研究室 ニュートリノグループ 池田一得 2012/3/12 教室発表会 1 宣伝 もくじ ニュートリノグループ T2K実験 2011年のT2K実験結果 T2Kのどこを貢献したか T2Kの目標達成のために 将来計画のための研究 まとめ NEUTRINO2012 Kyoto 2 ニュートリノグループの研究課題 T2K 実験 Super- K 実験 ニュートリノ振動パラメータ精密測定 ニュートリノ

More information

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 1 SK-I 大気ニュートリノにおける ニュートリノ振動の発見 石塚正基 ( 東京工業大学 ) 2016 年 2 月 20 日 第 29 回宇宙ニュートリノ研究会 東京大学宇宙線研究所 2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 3 大気ニュートリノ 大気ニュートリノ生成 From SK website p π µ + ν µ e +

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 有効理論を用いた vector like クォーク模型に対する B 中間子稀崩壊からの制限 (Work in progre) 広大院理 高橋隼也 共同研究者 : 広大院理, 広大 CORE-U 広大院理 島根大総合理工 両角卓也 清水勇介 梅枝宏之 導入 標準模型 (SM) のクォーク 標準模型は 6 種類のクォークの存在を仮定 アップタイプ ダウンタイプ u c t d 更にクォークが存在する可能性は?

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

スライド タイトルなし

スライド タイトルなし 006 8 (g cm -3 ) 1 ~10-8 cm ~10-1 cm 10 14 (n) 10 15 ~10-13 cm (p) (q) RGB uds... (contd.) 0 ~ fm np nn,pp (contd.) 1 GeV 100 GeV 1 TeV RI FAIR GSI RHIC BNL LHC CERN (contd.) T < 9 ~ 10 K (contd.) (k B

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

pptx

pptx Based on N. Nagata, S. Shirai, JHEP 1403 (2014) 049. Ø Ø Y. Okada, M. Yamaguchi, T. Yanagida (1991), H. E. Haber, R. Hempfling (1991) J. R. Ellis, G. Ridolfi, F. Zwirner (1991) Scalar Par cles Gravi no

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

pptx

pptx Based on J. Hisano, T. Kuwahara, N. Nagata, Phys. Lett. B723 (2013) 324, J. Hisano, D. Kobayashi, T. Kuwahara, N. Nagata, JHEP 1307 (2013) 038, N. Nagata, S. Shirai, JHEP 1403 (2014) 049. 1. Introduc+on

More information

案 A 003b-2 放 射 線 を 科 学 的 に 理 解 す る 右側の緑の人 放射 線 鳥居 寛之 小豆川勝見 渡辺雄一郎 著 中川 恵一 執筆協力 基 礎 か ら わ か る 東 大 教 養 の 講 義 新刊書籍 発売 2012年10月10日 刊行 を に 的 学 科 理解する 基礎からわか

案 A 003b-2 放 射 線 を 科 学 的 に 理 解 す る 右側の緑の人 放射 線 鳥居 寛之 小豆川勝見 渡辺雄一郎 著 中川 恵一 執筆協力 基 礎 か ら わ か る 東 大 教 養 の 講 義 新刊書籍 発売 2012年10月10日 刊行 を に 的 学 科 理解する 基礎からわか 案 A 003b-2 放 射 線 を 科 学 的 に 理 解 す る 右側の緑の人 放射 線 鳥居 寛之 小豆川勝見 渡辺雄一郎 著 中川 恵一 執筆協力 基 礎 か ら わ か る 東 大 教 養 の 講 義 新刊書籍 発売 2012年10月10日 刊行 を に 的 学 科 理解する 基礎からわかる東大教養の講義 放射線を科学的に理解する 基礎からわかる東大教養の講義 鳥居寛之 小豆川勝見 渡辺雄一郎

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information