vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Similar documents
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

本文/目次(裏白)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

プログラム

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


LLG-R8.Nisus.pdf

Contents 1 Jeans (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

総研大恒星進化概要.dvi


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

Gmech08.dvi

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

( ) ,

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

A


sec13.dvi


第86回日本感染症学会総会学術集会後抄録(I)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Note.tex 2008/09/19( )

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

85 4

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

TOP URL 1

Untitled

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

BH BH BH BH Typeset by FoilTEX 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [



1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

i

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

PDF


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

構造と連続体の力学基礎

Untitled


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

meiji_resume_1.PDF

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

TOP URL 1

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

パーキンソン病治療ガイドライン2002

研修コーナー

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

untitled

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

A 99% MS-Free Presentation

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

untitled

dynamics-solution2.dvi

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

C: PC H19 A5 2.BUN Ohm s law

Mott散乱によるParity対称性の破れを検証

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

keisoku01.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

gr09.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Transcription:

2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270 km s 1 (2.1) LSR 1985 (U,V,W ) = (10.0, 15.4, 7.8) km s 1, (2.2) 2.1 X U Y V Z W 2.2.2 LSR (Solar Circle R 0 2.1

2 X Y Z 2.1 (LSR) LSR (Inner Galaxy) (Outer Galaxy) 2.1 2.2.3 LSR V r V t V r V t LSR (2.2) V r = Θ sin(180 φ) Θ 0 sin l. (2.3)

2.2 3 Θ R θ 180 φ φ R0 D l Θ0 2.2 LSR V t = Θ cos(180 φ) Θ 0 cos l. (2.4) Θ sin(180 φ) = sin φ cos(180 φ) = cos φ sin φ/r 0 = sin l/r (2.2) R 0 cos l = D R cos φ (2.3) (2.4) ( Θ V r = R Θ ) 0 R 0 sin l, (2.5) R 0 V t = ( Θ R Θ ) 0 R 0 cos l Θ D, (2.6) R 0 R LSR R 2 = D 2 + R 2 0 2DR 0 cos l, (2.7) D R 0 R l

4 D = R 0 cos l ± R 2 R 2 0 sin2 l. (2.8) 0 R = ±R 0 sin l LSR (tangent point) 2.1 R 0 (2.8) 2.2.4 (2.5) (2.6) (J. Oort) D R 0 R R R 0 D cos l, (2.9) (2.5) V r [ d ( Θ )] (R R 0 ) R 0 sin l dr R R 0 (2.9) A [ A R d ( Θ )] = 1 [ Θ 2 dr R R 0 2 R dθ ]. (2.10) dr R 0 V r AD sin 2l. (2.11) A D l (2.11) (2.6) V t [ d ( Θ )] (R R 0 )R 0 cos l Θ 0 D, dr R R 0 R 0

2.2 5 100 (=Vt/D) 50 0-50 -100 0 100 200 300 2.3 µ V t /D l Feast (1997) (2.9) (2.10) B [ B 1 d 2R dr ]R (RΘ) = 1 [ Θ 0 2 R + dθ ]. (2.12) dr R 0 V t (A cos 2l + B)D. (2.13) A B D l (2.13) A B 1927 2.3 (2.13) µ V t /D 180 (2.13) A B R 0 Θ 0

6 A B = Θ 0 R 0 Ω 0, (2.14) (A + B) = ( dθ ). (2.15) dr R 0 Ω 0 LSR 1985 IAU km s 1 kpc 1 A B Oort (1927) 19±3-24±5 OB IAU (1985) 14.4±1.2-12.0±2.8 (1993) 12.2±0.6-8.2±0.6 KM Feast (1997) 14.8±0.8-12.0±0.6 Mignard (2000) 14.5±1.0-11.5±1.0 KM 2.2.5 LSR (epicycle) (epicyclic approximation) (R, φ, z) Φ(R, z)

2.2 7 R = V 2 R Φ R, (2.16) L z (2.16) L z = R 2 φ = const. (2.17) R = Φ eff R, Φ eff = Φ + L 2 z 2R 2, (2.18) Φ eff (effective potential) (2.18) Ṙ 1 2Ṙ2 + Φ eff = E (= const.), (2.19) E 1) R 2.4 (R 1, R 2 ) (2.19) Ṙ =0 E 0 E Φ eff R E Φ eff guiding center R g x R R g Φ eff R g (2.18) [ 2 Φ ] eff ẍ = x R 2. (2.20) R g 1) z 0

8 2.4 0 >E>Ψ eff [ Φ eff / R] Rg =0 (2.20) x = X 0 cos(κt + θ 0 ), (2.21) X 0 κ (epicyclic frequency) θ 0 κ (2.16) Φ/ R = V 2 /R = RΩ 2 Ω κ 2 = d [ RΩ 2] + 3L2 z dr R 4 =4Ω2 +2RΩ dω dr = 4BΩ 0. (2.22) B B B κ 2

2.2 9 κ B κ (2.20) (Ω = const.) κ =2Ω κ = Ω 2Ω κ Ω κ κ 1.4Ω 0 y φ = L z R 2 = ΩR2 ( g (R g + x) 2 Ω 1 2x ). (2.23) R g y (2.21) (2.23) y y = 2Ω κ X 0 sin(κt + θ 0 ) (2.24) (2.21) (2.24) 2.5 2Ω/κ κ 1.4Ω y 2.5 2.2.6 (K. Schwarzschild) n 0 d v [ ( v 2 f( v)d v = exp R (2π) 3/2 σ R σ φ σ z 2σR 2 + v2 )] φ 2σφ 2 + v2 z 2σz 2. (2.25)

10 1 0.5 0 x -0.5 y -1-1 -0.5 0 0.5 1 2.5 1 X 0 =0.1 (κ = Ω) σ R σ φ σ z (velocity ellipsoid) R 0 R g x = R 0 R g LSR y v y v y = R 0 φ R0 Ω 0, (2.26) (2.23) [ v y = x 2Ω + R dω ] =2Bx, (2.27) dr R 0

2.2 11 x (2.21) <vy 2 > <vx 2 > = 4B2 <x 2 > κ 2 <x 2 > = 4B2 κ 2 = B A B, (2.28) (2.25) σ y B = σ x A B, (2.29) 2.2.7 HI HI 21cm 1420MHz 1951 HI 21cm HI 2.6 - Position-Velocity diagram PV b =0 HI l LSR V r 2) 2) PV l l V

12 2.6 HI l LSR V r l (terminal velocity) PV 2.2.8 2.6 PV V term HI (2.5) l V r / D =0 (2.5) V r D R( = Θ ) R R D R 0 sin l =0. (2.30) R/ D (2.7) R D = D R 0 cos l. (2.31) R

2.2 13 80 60 40 V term Radial Velocity (km/s) 20 0-20 -40-60 -80 l = 135 l = 45-100 -120 0 2 4 6 8 10 12 14 16 18 20 Distance (kpc) 2.7 D V r Θ(R) =Θ 0 = 220 km s 1 R 0 =8.5 kpc l =45 l = 135 V term Θ D R 0 cos l =0 (Tangent point) 2.1 V term Θ(R) R = R 0 sin l, V term = Θ(R) Θ 0 sin l. (2.32) 2.1 (2.32)

14 2.2.9 Rotation Curve ( Θ V r = R Θ ) 0 R 0 sin l. (2.33) R 0 R 0 Θ 0 V r R Θ(R) R V t V t HI CO PV HI (M.Merrifield) HI (2.33) ( Θ V r = W (R) sin l, W(R) R Θ ) 0 R 0, (2.34) R 0 W l HI b a ( z0 ) ( ) z 0 b a = arctan = arctan D R 0 cos l + R 2 R 2 0 sin l, (2.35)

2.2 15 5 4.5 4 apparent disk thickness 3.5 3 2.5 2 1.5 1 0.5 0 180 160 140 120 100 80 60 40 20 0 Galactic Longitude 2.8 HI z R/R0 Θ(R) z 0 D R (2.8) 2.35 R/R 0 z 0 R 0 R/R 0 (2.34) W (R) Θ(R) 2.9 10 km s 1 30 km s 1 2.9 Θ 0 220, 200, 180 km s 1 Θ 0

16 300 200 100 0 0 0.5 1 1.5 2 2.5 3 2.9 (1997) R R 0 R 0 Θ 0 R 0 Θ 0 2.2.10

2.3 17 VLBI VERA JASMINE SIM GAIA 21 2.3 2.3.1 Φ(R, z) K z = Φ/ z 4πGρ(z) 2 Φ z 2 = K z z, (2.36) z σz 2 1 (nσz 2) = Φ n z R = K z (2.37) n z σz 2 ρ(z)

18 ρ 0 = ρ(z =0) (Oort Limit) ρ 0 =0.1 0.2 M pc 3 ρ obs 0.1 M pc 3 2.3.2 (Enclosed Mass) M r vc 2 r = GM r r 2, (2.38) v c v r M r = rv2 c G (2.39) M r ρ(r) M r = 4πr 2 ρ(r)dr. (2.40) M r ρ(r) ρ r α α = 2 M r r 1 (2.39) v c ρ r 2

2.3 19 2.10 2.9 M r Θ 0 =180, 200, 220 km s 1 R 0 8.5 kpc 2.3.3 (2.39) R kpc V km s 1 M r M (=1.99 10 30 kg) ( M r =2.32 10 5 R )( )2 V kpc km s 1 M, (2.41) 2.9 M r 2.10 M r M r Θ 0 1 3

20 10 11 M Θ 0 (2.41) I = I 0 exp( R/h) h = 3 kpc 10 kpc 85% 2.10 10 kpc 2.10 (dark matter) 2.3.4 HI HI 20 kpc 10 kpc 100 kpc (2.41) 100 kpc 4 10 11 1 10 12 M 2.10 HI halo, dark halo)

2.3 21 2.3.5 (Mass-to-Light ratio) M/L M/L = (M/M ) (L/L ), (2.42) M/L=1 V M/L V M/L M/L L V 1.4 10 10 L M =1 3 10 11 M M/L M/L 7 21 (R <2R 0 ) M/L M/L, M/L 30 70 (R <100 kpc) 2.3.6

22 D LS D S D L 2.11 3) MACHO: Massive Astrophysical Compact Halo Object 4) 2.11 θ β θ β = α D LS D S. (2.43) α α = 4GM c 2 b, (2.44) 3) 4) MACHO (WIMPs: Weakly Interacting Massive Particles) macho wimp

2.3 23 M b R E R E ( 4GM )1/2 D L D LS R E c 2, r D L θ, u D L β, (2.45) D S R E R E (2.43) r 2 ur 1=0, (2.46) 2 r 1,2 = u ± u 2 +4 2 (2.47) u 1 r 1,2 1 (2.45) R E D L =10kpc D S =50kpc M =1M R E 8AU θ E R E /D L =0.8 mas A A =1 A 1,2 = r 1,2dr 1,2 r = 4 1,2 udu r1,2 4 1. (2.48) 1, 2 (2.47)

24 A = A 1 + A 2 = u2 +2 u u 2 +4. (2.49) u =0 A u 1 u =0 A 100 u = A =1 u =1 A =3/ 5=1.34 3 2.3.7 (2.49) µ β β = β0 2 +(µt)2, (2.50) β 0 t 0 (2.45) u = u 2 0 +(t/t E) 2, (2.51) t E t E R E µd L (2.52) (2.51) u 0 t E (2.49) (2.51) (2.12) t E (2.52) (2.45)

2.3 25 2.12 MOA MOA M =1M D L =10kpc v µd L = 200 km s 1 t E 70 2.3.8 (optial depth) πr 2 E τ = πr 2 ρ E dd, (2.53) M D M ρ

26 R E (2.45) (2.53) M τ = 4πG c 2 ρ(d) D L(D S D L ) dd, (2.54) D S ρ 200 km s 1 ρ r 2 τ exp 5 10 7 200 MACHO EROS OGLE MOA MACHO 1992 1999 5.7 17 τ =1.2 10 7 τ exp 20% MACHO Γ MACHO 0.5M MACHO MACHO MOA OGLE