Evolutes and involutes of fronts Masatomo Takahashi Muroran Institute of Technology

Similar documents
9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

抄録/抄録1    (1)V

本文/目次(裏白)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

第86回日本感染症学会総会学術集会後抄録(I)

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005


プログラム

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

概況

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) ( )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

all.dvi

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

TOP URL 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

第1章 微分方程式と近似解法

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

sekibun.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

gr09.dvi

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

日本内科学会雑誌第98巻第4号

arxiv: v1(astro-ph.co)

TOP URL 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

日本内科学会雑誌第97巻第7号

TOP URL 1


パーキンソン病治療ガイドライン2002

重力方向に基づくコントローラの向き決定方法

福大紀要 02730816/教育科学 太田 氏家

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

TOP URL 1

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

研修コーナー

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

LLG-R8.Nisus.pdf

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Z: Q: R: C: sin 6 5 ζ a, b

70 : 20 : A B (20 ) (30 ) 50 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

meiji_resume_1.PDF

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Gmech08.dvi


untitled

量子力学 問題

03実習2・松井.pptx

201711grade1ouyou.pdf

Chap11.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

SO(2)

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

all.dvi

DVIOUT-HYOU

chap9.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

日本医科大学医学会雑誌第7巻第2号

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

数学演習:微分方程式

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

nsg02-13/ky045059301600033210

untitled

KEIRIN

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ,

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

untitled


表紙

: , 2.0, 3.0, 2.0, (%) ( 2.

Part () () Γ Part ,

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1

Transcription:

Evolutes and involutes of fronts Masatomo Takahashi Muroran Institute of Technology

evolute involute, evolvent involute : involvo

evolvent : evolvo 6 4 6 4 4 6 4 6

H 3

γ : I R C γ(t) 0, t(t) := γ(t) γ(t), n(t) := J(t(t)) = J( γ(t)) γ(t), J π/ {t(t), n(t)} γ(t) ( ṫ(t) ṅ(t) ) = ( 0 γ(t) κ(t) γ(t) κ(t) 0 ) ( t(t) n(t) ), κ(t) = det( γ(t), γ(t)) γ(t) 3 = ṫ(t) n(t) γ(t) κ(t)

γ(t) = γ, γ : I R γ γ R A b γ(t) = A(γ(t)) + b ( t I). κ : I R κ γ : I R γ(t) = ( ( cos ) κ(t) dt dt, ( sin ) ) κ(t) dt dt.

γ, γ : I R s = γ(t) s = γ(t) κ κ γ γ γ : I R γ Ev(γ) : I R, t γ(t) + κ(t) n(t), κ(t) 0 t 0 I γ Inv(γ, t 0 ) : I R, t γ(t) ( t t 0 γ(t) dt ) t(t).

.0 6 6 4 4 0.5.0 0.5 0.5.0 6 4 4 6 6 4 4 6 0.5 4 4.0 6 6 t 0 = 0 t 0 = π () Ev(Inv(γ, t 0 ))(t) = γ(t). () Inv(Ev(γ), t 0 )(t) = γ(t) + κ(t 0 ) n(t). Ev Inv

γ γ λ : I R, t γ(t) + λn(t) (λ R) γ λ /κ(t) γ λ Ev(γ λ )(t) = Ev(γ)(t)

(γ, ν) : I R S : (γ, ν) : I R S (γ, ν) θ = 0 γ(t) ν(t) = 0 ( t I). θ T R = R S (γ, ν) ( γ(t), ν(t)) (0, 0) (γ, ν) γ : I R ν : I S : C (γ, ν) γ : I R ν : I S ν(t) = n(t) (γ, ν) γ

(n, m) n < m = n + k γ : R R ( γ(t) = n tn, ) m tm ν : R S ν(t) = t k + ( tk, ) (γ, ν) k = (, 3) (3, 4) (, 4) (, 5) γ(t) = ( t, 3 t3) γ(t) = ( 3 t3, 4 t4) γ(t) = ( t, 4 t4) γ(t) = ( t, 5 t5)

(γ, ν) : I R S µ(t) := J(ν(t)) {ν(t), µ(t)} γ(t) ( ) ( ) ( ) ν(t) 0 l(t) ν(t) =, µ(t) l(t) 0 µ(t) l(t) = ν(t) µ(t) γ(t) ν(t) = 0 β : I R γ(t) = β(t)µ(t) (l, β) : I R, t (l(t), β(t)) t

γ κ(t) (γ, n) (l(t), β(t)) l(t) = β(t) κ(t) β(t) = l(t) = κ(t) t 0 γ β(t 0 ) = 0 t 0 γ (γ, ν) l(t 0 ) = 0 (l(t), β(t)) (0, 0) (γ, ν), ( γ, ν) : I R S

(γ, ν) ( γ, ν) R A b γ(t) = A(γ(t)) + b, ν(t) = A(ν(t)) ( t I). (l, β) : I R (l, β) (γ, ν) : I R S ( ( ( γ(t) = ν(t) = ( cos ) β(t) sin l(t) dt ( ) ( l(t) dt, sin dt, β(t) cos )) l(t) dt. ) ) l(t) dt dt,

(γ, ν), ( γ, ν) : I R S (l, β) ( l, β) (γ, ν) ( γ, ν) γ : I R : ν : I S (γ, ν) : I R S γ(t) ν(t) = 0 ( γ(t), ν(t)) (0, 0) t I. ( ν(t) µ(t) ) = ( (l(t), β(t)) (0, 0). 0 l(t) l(t) 0 ) ( ν(t) µ(t) ), γ(t) = β(t)µ(t)

(γ, ν) : I R S l(t) 0 γ Ev(γ)(t) := γ(t) β(t) l(t) ν(t). ( ) t γ Inv(γ, t 0 )(t) := γ(t) β(t) dt µ(t). t 0 () Ev(γ)(t) ν Ev(γ) (t) := J(ν(t)) = µ(t) () Inv(γ, t 0 )(t) ν Inv(γ,t0 ) (t) := J (ν(t)) = µ(t)

() Ev(Inv(γ, t 0 ))(t) = γ(t). () Inv(Ev(γ), t 0 )(t) = γ(t) β(t 0) l(t 0 ) ν(t). t 0 γ Inv(Ev(γ), t 0 )(t) = γ(t) t 0 γ () t 0 Ev(γ) γ 3/ t 0 () t 0 Ev(γ) Ev(Ev(γ)) γ 4/3 t 0

γ t 0 3/ γ(t 0 ) = 0, det ( γ(t 0 ),... γ (t 0 )) 0. γ t 0 4/3 γ(t 0 ) = γ(t 0 ) = 0, det ( γ (3) (t 0 ), γ (4) ) (t 0 ) 0. 4 4 4 4 4 4 4 4 3/

4/3 γ(t) = ( 3 t3, 4 t4) () t 0 γ Inv(γ, t 0 ) 3/ t 0 () t 0 γ 3/ Inv(γ, t 0 ) 4/3 t 0 t 0 γ d dt ( ) β (t 0 ) = 0 d l dt Ev(t 0) = 0.

(γ, ν) : I R S () γ γ () γ 3/ γ (d/dt)ev(t) = 0

(Inv(γ, t 0 ), µ) : I R S () Inv(γ, t 0 ) γ () Inv(γ, t 0 ) 3/ γ Ev(γ) Inv(γ, t 0 ) (γ, ν) : I R S (l, β) l(t) 0

( ) () γ Ev (γ)(t) = Ev(Ev(γ))(t) = Ev(γ)(t) () γ t 0 d l(t) dt ( ) β l (t) µ(t). Inv (γ, t 0 )(t) = Inv((Inv(γ), t 0 ), t 0 )(t) ( ( t ) ) t = Inv(γ, t 0 )(t) β(t)dt l(t) dt ν(t). t 0 t 0 Ev 0 (γ) := γ, Ev (γ) := Ev(γ), Ev n (γ) := Ev(Ev n (γ)) Inv 0 (γ, t 0 ) := γ, Inv (γ, t 0 ) := Inv(γ, t 0 ), Inv n (γ, t 0 ) := Inv(Inv n (γ, t 0 ), t 0 )

β 0 (t) := β(t), β n (t) := β n (t), β n (t) := l(t) ( t t 0 β n+ (t)dt ) l(t) (n ) () γ n Ev n (γ)(t) = Ev n (γ)(t) β n (t)j n (ν(t)), () γ n Inv n (γ, t 0 )(t) = Inv n (γ, t 0 ) + ( t t 0 β n+ (t)dt ) J n (ν(t)). J k J k J π/

(Inv, ν) invo (Inv, µ) invo (γ, ν) evo (Ev, µ) evo (l, β) (Ev, ν)

(Inv, ν) invo (Inv, µ) invo (γ, ν) evo (Ev, µ) evo (Ev, ν) (l, β ) (l, β ) (l, β) (l, β ) (l, β ) l(t) 0 l(t) = β(t) 0 ( t ) t t β(t)dt dt β(t)dt β(t) β (t) β (t) t 0 t 0 t 0