85 4

Similar documents
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

70 : 20 : A B (20 ) (30 ) 50 1

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Gmech08.dvi

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

+1級・建築計画-06章_cs3.indd

YU68.ind



1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

プリント

Gmech08.dvi

重力方向に基づくコントローラの向き決定方法

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

本文/目次(裏白)

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

プログラム

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

c 2009 i

Chap9.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

2000年度『数学展望 I』講義録

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

直交座標系の回転

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Gmech08.dvi

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

untitled

Note.tex 2008/09/19( )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

高校生の就職への数学II

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

研修コーナー


r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

tnbp59-21_Web:P2/ky132379509610002944

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

<B54CB5684E31A4E9C0CBA4E5AA6BC160BEE3B27AA544A5552E706466>

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

振動工学に基礎

1

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

08-Note2-web

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

08_眞鍋.indd

Microsoft Word - 学士論文(表紙).doc


OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

セゾン保険_PDF用.indd

高等学校学習指導要領

高等学校学習指導要領

日本内科学会雑誌第98巻第4号

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

main.dvi

chap1.dvi

MF 型

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

基礎数学I

untitled

mobius1

i

‘¬”R.qx


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Transcription:

85 4

86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V t ( ) (, t) = sin π ( V t) = sin π V t «

4.1 87 = V T (, t) = sin π t «T t t Step! (Step 1) (0, t) (Step ) ± V (, t) 55 = 0 + V t T t T θ π J t ( = 0 ) ± sin t : T = θ : π ) θ = π T t ± cos (0, t) = sin π T t = 0 P ( ) V Check! = 0 V P V P t t V ω = π T T t V t (, t) = sin π t T V t = sin π T «V T = V T t (, t) = sin π T «

88 Copright c 005 Kumanekosha 4.1. 1 1 5 5 I 56 t = 0 + (1) 0 F () F (t = 0 ) V C D E F (1) 0, C, E

4.1 89 () = 0,, D, F v > 0( ), F 0 0 + + Check!

90 Copright c 005 Kumanekosha 4 Step! (Step 1) (0) (Step ) (Step 3) + + (Step 4) I (t = 0 ) V 57 P T (1) P Q R S T U () (1) Q, U () ( )...Q, U

4.1 91 NTES

9 Copright c 005 Kumanekosha, 4. C t 0 t, t = 0 C, D D D C C t = 0 0 0... D t = 0 0 0 0... t = 0 0 0 0... Q 0

4. 93 m = m = 1 m = 0 m = 1 m = P Q P P P P = PQ Q Q () Q Q = P P P P = m (m = 1,, 3,...)... 1 P P = m 1 «(m = 1,, 3,...)... 1 m = 0 P = P P, m = 1, 3 0

94 Copright c 005 Kumanekosha (1) 58 () or or 3 Step! (Step 1) (Step ) or 8 < : 8 < : (Step 3)

4. 95 59 3.5,, = 3.5 = 0.5 7 I Check! 3 3 = 6 60 J, =, = = 0.5 4 10 = 3 10

96 Copright c 005 Kumanekosha 4.3 4.3.1 0 0 0 Step! (Step 1) (Step )

4.3 97 0 4.3. = 0 = 0 = 0 0 π 3 Step! (Step 1) (Step ) π (Step 3) π π π

98 Copright c 005 Kumanekosha Check! ω = π T k = π T + 1 1 (, t) = sin π π ( vt) = sin π «T t (, t) = sin π π ( + vt) = sin + π «T t ««α + β β α sin α + sin β = sin cos... 1... 1 (, t) + (, t) = sin π {z } cos π T t {z }... 3 3 sin π t sin π = 0 Check! Check! = 0,,,... Check! = 4, 3 4,... π = 0, π, π,... 0 sin π = ±1 π = π, 3π,...

4.4 99 4.4 4.4.1 θ v C, C t C= v t v t 3 Step! C D θ θ (Step 1) C (Step ) (Step 3) C = D \C = \D = 90 C D ( ) = ( )

100 Copright c 005 Kumanekosha n n v = v n = v f = n θ 1 C θ D Check! n 1 sin θ 1 = n sin θ I II n = 1 v v 1 = v n 1 ( I), v = v n ( II)... 1 θ 1 I II C C t C =v 1 t II t v t v t D D D 3 Step! (Step 1) v t (Step ) (Step 3) C = v 1 t = sin θ 1 D = v t = sin θ n 1 sin θ 1 = n sin θ = n 3 sin θ 3 v 1 t v t = sin θ 1... sin θ 1 v 1 = sin θ 1 = n v sin θ n 1 n 1 sin θ 1 = n sin θ I θ θ n n 1 n 1 n 61 n 1, n (n 1 < n) θ θ n sin θ = n 1 sin θ 1 =... = n sin θ ) θ = θ n i sin θ i θ

4.4 101 n 1 n n 1 sin θ = n sin r... 1 n 1 > n 1 r > θ θ θ = theta c r = 90 () 0 θ > θ c θ c θ r n 1 n n 1 sin θ c = n sin 90 ) sin c = n n 1 θ c 6 n 1 n n θ (1) θ θ 1 n () (1) (1), P P θ 1 θ, θ c n sin θ 1 = 1 sin 90... 1 θ c θ P θ 1 1 n 1 n sin θ = 1 sin θ c ) 1 = n sin θ 1... = n sin(90 θ ) = n cos θ q = n n sin θ p = n sin θ c p ) sin θ c = n 1 Check! P 1 θ 1 Check! θ 1 θ c sin θ < p n 1... 3 () θ (0 < θ < 90 ) 3 p n 1 > 1 ) n >

10 Copright c 005 Kumanekosha L n = 4.5 L L n = n n = L L 1 L L L = m (m = 1,,...) n L m L L = n L = m (m = 1,,...) I L L P 63, P n P L( ) = nl nl n L L = m (m = 0, 1,,...) n(l L ) = m (m = 0, ±1, ±,...)

4.5 103 64 n 1 L n l L( ) = n 1 L {(L l) + n l} J L n 1 n l (n 1 1)L (n 1)l = m + 1 «(m = 0, 1,,...) (n 1 1)L (n 1)l = m + 1 «(m = 0, ±1, ±,...)

104 Copright c 005 Kumanekosha 4.5.1 n 1 n n 1 < n 0 n n 1 n 1 n π π L = m + 1 «L = m I a π d b 1 n 65 d n(> 1) a b 1 L = nd 0 a 1 n(1 < n) π b n 1(n > 1) a π 8 >< nd = m + 1 «(m = 0, 1,,...) >: nd = m (m = 0, 1,,...)

4.5 105 66 n 0 n d θ a b n 0 > n (1) r r J b a d θ r 1 n () θ n 0 (1) a b C d b a θ r 1 n L = n(c + C) 0 C n 0 = n(c + CD) = n(d cos r) D = n d cos r 1 n(1 < n) n n 0 (n < n 0 ) nd cos r = m (m = 1,, 3...) () 1 sin θ = n sin r L = nd cos r p = nd 1 sin r p = d n n sin r p = d n sin θ p d n sin θ = m (m = 1,, 3...) Check! r θ r θ

106 Copright c 005 Kumanekosha 4.6 ( ) ( ) 3 Point! 1 3 1 3 F 3 1 F I F F 67 F 1 a b f a, b, f 1 a + 1 b = 1 f or

4.6 107 3 Step! (Step 1) 1 3 (Step ) (Step 3) b 68 (a)(b)(c) a b f (a), MF F J (a) (b) m = b a = b f f M ) 1 a + 1 b = 1 f f b (c) a F (b), m = b a = b + f f b a M ) 1 a 1 b = 1 f f MF F F (a), (b), (c) M F (c), m = b a = f b f ) 1 a 1 b = 1 f MF F b M F a f

108 Copright c 005 Kumanekosha V m 4.7 m V m V f V m m f V m/s 4.7.1 f = V f = V... 1 1 V m/s m f V mf V 1 V f f V V, 1 f u m/s m (1) () = V V f u V + u f 1 V T f 1 = V + u = V + u f V... V T V T V T = V T = V f

4.7 109 () V T v C, V T vt vt = V T vt = (V v)t = V v f... D C 69 f = V = V V v f... 3 f v f = V f 1 = V f V + v Check! D 3 = V + v f J f v f 1 = V + v = V + v f V f V f = V = = V v f 1 V V v f 1 = V + v V v f f V = V u f 1 f f 1 v V 1 = V + u

110 Copright c 005 Kumanekosha 4.7. f 1, f f 0 f 0 = f 1 f... 1 t 0 f 1, f (f 1 < f ) t 1 t f 1 t f t t t 0 f t 0 ft 0 t 1 f 1 t π t 0 = t t 1 f 1 t 0 f t 0 1 f t 0 f 1 t 0 = 1 t 0 1 t 0 = f f 1 f 0 f 0 = 1 t 0 = f f 1 f 0 = f 1 f

4.7 111 () 1 = sin (ω 1 t k 1 )... = sin (ω t + k )... 3 Check! k = π ω 1. =. ω, k 1. =. k ω1 ω 1 + = cos «t k 1 + k {z } () ω1 + ω sin «t k 1 k {z } ()... 4 ω L = ω 1 ω ω L =.. 0 ω S = ω 1 + ω ω S =.. ω1 =.. ω 1, 4 T S = 1 f S t T L = 1 f L ω 1 = πf 1, ω = πf f L ω L = ω 1 ω = π f 1 f f L = ω L π = f 1 f f 0 f 0 = f L = f 1 f

11 Copright c 005 Kumanekosha = V T f = 1 T v = v n = n ( )=( ) (, t) = sin π t «T (, t) = cos π sin π T t f 1 = V 1 = V + v 8 >< = V v f >: f = V = V V v f n 1 sin θ 1 = n sin θ 1 a + 1 b = 1 f Φ = π L = πm L = n(l L 1 ) = m π f = f 3 f 4