laplace.dvi

Similar documents
資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

untitled

参加報告書

P70

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,



untitled

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

December 28, 2018

Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書

.A. D.S

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =



DVIOUT

数学概論I

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


弾性論(Chen)

『こみの株式会社』の実践

,276 3,

EX-word_Library_JA

324.pdf

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

u u u 1 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


TOP URL 1

陦ィ邏・2

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.



f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

Microsoft Word - 触ってみよう、Maximaに2.doc

( )

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

fa-problem.dvi



(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Jacobson Prime Avoidance

meiji_resume_1.PDF

2 0.1 Introduction NMR 70% 1/2

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

構造と連続体の力学基礎

曲面のパラメタ表示と接線ベクトル

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

arma dvi

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

mugensho.dvi

Note.tex 2008/09/19( )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V


x ( ) x dx = ax

X線-m.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

MY16_R8_DI_ indd

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

K E N Z OU

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) ( )

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


「国債の金利推定モデルに関する研究会」報告書

2 0 B B B B - B B - B - - B (1.0.6) 0 1 p /p p {0} (1.0.7) B m n ϕ : B ϕ(m) n ϕ 1 (n) = m /m B/n 1.1. (1.1.1) a a n > 0 x n a x r(a) a r(r(a)) = r(a)

1' ド Ui:;~

( ) x y f(x, y) = ax

II 2 II

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

difgeo1.dvi


di-problem.dvi

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

数値計算:有限要素法

pdf

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

応力とひずみ.ppt

Dynkin Serre Weyl


,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

( )

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

MY16_R8_DI_ indd


Transcription:

Λ 2.1 2004.2.20 1 Λ 1

2 Ay = u 2 2 A 2 u " # a 11 a 12 A = ; u = a 21 a 22 " # u 1 u 2 y Ay = u (1) A (1) y = A 1 u y A 2 x i i i =1; 2 Ax 1 = 1 x 1 ; Ax 2 = 2 x 2 (2) x 1 x 2 =0 (3) (3) (2) x 1 x 2 x 1 x 1 =1; x 2 x 2 =1 (4) 2 2 (1) x 1 x 2 2 u x 1 x 2 1 u = U 1 x 1 + U 2 x 2 (5) U 1 U 2 u x 1 x 2 U 1 U 2 x 1 x 2 U 1 U 2 (5) U 1 = x 1 u; U 2 = x 2 u (6) x 1 u = x 1 (U 1 x 1 + U 2 x 2 ) = x 1 (U 1 x 1 )+x 1 (U 2 x 2 ) 2

u U 2 x 2 x 2 U 1 x 1 x 1 1: x 1 x 2 u U 1 U 2 (3) (4) x 1 u = U 1 (x 1 x 1 )+U 2 (x 1 x 2 ) = U 1 (6) U 1 U 2 y y x 1 x 2 Y 1 Y 2 y y = Y 1 x 1 + Y 2 x 2 (7) (1) y Y 1 Y 2 (5) (7) (1) A (Y 1 x 1 + Y 2 x 2 )=U 1 x 1 + U 2 x 2 (8) Y 1 Y 2 x 1 x 2 (8) A (Y 1 x 1 + Y 2 x 2 ) = Y 1 (Ax 1 )+Y 2 (Ax 2 ) = Y 1 ( 1 x 1 )+Y 2 ( 2 x 2 ) = ( 1 Y 1 ) x 1 +( 2 Y 2 ) x 2 (9) (8) (9) ( 1 Y 1 ) x 1 +( 2 Y 2 ) x 2 = U 1 x 1 + U 2 x 2 (10) 3

(1) (10) x 1 x 2 (10) 1 Y 1 = U 1 ; 2 Y 2 = U 2 (11) y y Y 1 = U 1 1 ; Y 2 = U 2 2 (11) y = U 1 1 x 1 + U 2 2 x 2 4

3 A 2 A 2 A (2) A 2 x 1 x 2 A 2 x 1 = A (Ax 1 ) = A ( 1 x 1 ) = 1 (Ax 1 ) = 2 1 x 1 A 2 x 1 2 1 x 2 A A 2 A 2 A 2 y + Ay+ y = u (12) y A 2 y (7) A 2 (Y 1 x 1 + Y 2 x 2 )=( 2 1 Y 1) x 1 +( 2 2 Y 2) x 2 (13) (13) (12) (5) (7) ( 2 1 Y 1 + 1 Y 1 + Y 1 ) x 1 +( 2 2 Y 2 + 2 Y 2 + Y 2 ) x 2 = U 1 x 1 + U 2 x 2 (14) x 1 x 2 (14) Y 1 Y 2 2 1 Y 1 + 1 Y 1 + Y 1 = U 1 2 2 Y 2 + 2 Y 2 + Y 2 = U 2 Y 1 = U 1 2 1 + 1 +1 ; Y 2 = U 2 2 2 + 2 +1 (7) (12) y y = U 1 2 1 + 1 +1 x 1 + U 2 2 2 + 2 +1 x 2 A 2 2 n n (12) a 2 A 2 y + a 1 Ay+ a 0 y = b 0 u 5

y y = = b 0 U 1 b 0 U 2 b 0 U n a 2 2 1 + a x 1 + 1 1 + a 0 a 2 2 2 + a x 2 + :::+ 1 2 + a 0 a 2 2 + a x n n 1 n + a 0 nx i=1 b 0 U i a 2 2 + a x i i 1 i + a 0 6

4 dy(t) = u(t) (15) y(t) t u(t) y(t) (15) d y(t) =u(t) (16) u(t) y(t) t u(t) t 1 t 2 ::: u(t 1 ) u(t 2 ) ::: 2 u(t) (16) d A y Ay y(t) (16) (1) d u(t) y(t) 3 d d d e j!t d ej!t = j! e j!t (17) e j!t d j! ej!t (17)!! e j!t u 6 - t 2: 7

y 6 - t d dy 6 - t u 6 - t 3:! e j!t U(j!) u(t) e j!t u(t) U(j!) u(t) = 1 1 U(j!) ej!t d! (18)! (18) (18) U(j!) (6) f (t) g(t) hf; gi hf; gi = 0 f (t) g(t) (19) f (t) f (t) (19) n (19) f (t) t hf; fi 0 n 2 8

(19) he j! 1t ;e j! 2t i =ffi(! 2! 1 ) (20) ffi( )! 1 6=! 2 ffi(! 2! 1 )=0 (20) e j! 1t e j! 2t U(j!) U(j!) = he j!t ;ui (21) = = e j!t u(t) (22) 0 u(t) e j!t (23) 0 (18) (23) (16) u(t) (16) y(t) (18) y(t) Y (j!) y(t) = 1 y(t) (18) (24) (16) d 1 1 1 Z 1 1 1 1 Y (j!) ej!t d! (24) = 1 1 Y (j!) ej!t d! d (Y (j!) ej!t ) d! = 1 1 Y (j!)(j! ej!t ) d! = 1 1 j! Y (j!) ej!t d! = 1 e j!t (25) (26) Y (j!) 1 U(j!) ej!t d! 1 U(j!) ej!t d! 1 U(j!) ej!t d! 1 U(j!) ej!t d! (25)! j! Y (j!)=u(j!) (26) Y (j!)= U(j!) (24) (27) Y (j!) y(t) j! (27) 9

5 d 2 2 n n 2 d 2 2 ej!t = d (j! ej!t ) = (j!) d ej!t = (j!) 2 e j!t e j!t (j!) 2 n n =2 n >2 d 2 y(t) 2 + dy(t) (28) d 2 + y(t) =u(t) (28) y(t) + d y(t) +y(t) =u(t) (29) 2 u(t) y(t) (24) d 2 y(t) = d 1 2 2 2 = 1 = 1 Z 1 1 d 2 1 Y (j!) ej!t d! 2 (Y (j!) ej!t ) d! 1 (j!)2 Y (j!) e j!t d! (29) (18) (24) 1 1 ((j!)2 + j! +1)Y (j!) e j!t d! = 1 1 U(j!) ej!t d! (30) e j!t! (30) Y (j!) ((j!) 2 + j! +1)Y (j!)=u(j!) (31) Y (j!)= U(j!) (j!) 2 + j! +1 (32) 10

y(t) (29) d 2 a 2 y(t) +a d 2 1 y(t) +a d 0 y(t) =b 1 u(t) +b 0 u(t) (33) Y (j!) Y (j!)= b 1 (j!)+b 0 a 2 (j!) 2 + a 1 (j!)+a 0 U(j!) (34) d A ψ! ψ! e j!t ψ! j! ψ! ψ! 11

6 (23) u(t) t!1 t!1 u(t) lim u(t) =1 t!1 c>0 ^u(t) =u(t) e ct (35) lim ^u(t) =0 (36) t!1 u(t) =e t c =2 ^u(t) =e t e 2t = e t (36) (35) ^u(t) ^u(t) ^U (j!) ^u(t) = 1 1 ^U (j!) e j!t d! (37) u(t) =^u(t) e ct u(t) u(t) = ect 1 ^U (j!) e j!t d! (38) e ct u(t) = 1 = 1 1 ^U (j!) e ct e j!t d! 1 ^U (j!) e (c+j!) t d! (39) 12

e ct u(t) ^u(t) ^U (j!)! U(s) e ct 4: ^u(t) u(t) u(t) ^u(t) c>0 c>0 ^u(t) u(t) ^U(j!) (37) (18) (23) ^U(j!)= (35) ^U (j!) = = 0 ^u(t) e j!t (40) u(t) e ct e j!t 0 u(t) e (c+j!) t (41) 0 (39) (41) c + j! ^u(t) ^U(j!)= ^U(Im(c + j!)) j! c + j! ^U U c + j! s (39) u(t) = 1 j = 1 j 1 ^U (j!) e (c+j!) t jd! Z c+j1 c j1 U(s) est ds (42) (41) U(s) = u(t) e st (43) 0 13

(42) (43) 4 (39) (41) (42) (43) s c + j! (43) s (43) s c (38) c s = c j1 s = c + j! c c (42) (42) c 4 14