Jean Le Rond d Alembert, ( ) 2005

Similar documents
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Gmech08.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Annual-report-vol-61.pdf

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

‘¬”R.qx

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

QMI_09.dvi

QMI_10.dvi

untitled

untitled

main.dvi

pdf

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

v er.1/ c /(21)

重力方向に基づくコントローラの向き決定方法

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

- II

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

chap03.dvi

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (


I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re


Xray.dvi


帝国議会の運営と会議録をめぐって

05Mar2001_tune.dvi


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4‐E ) キュリー温度を利用した消磁:熱消磁

<4D F736F F D EA98DECB2DDCBDFB0C0DEDDBDA5B1C5D7B2BBDEB082F A282BDBDCBDFB0B6B082CC666F82C6B2DDCBDFB0C0DEDDBD82CC91AA92E85B8CF68A4A5D732E648163>


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Note.tex 2008/09/19( )

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

振動工学に基礎

スタイルシェルフ 〈クローク収納プラン〉

2

<31332D97708CEA89F090E02E6D6364>


マイスタープロジェクト 推奨仕様

1

第18回海岸シンポジウム報告書


3

(718)



液晶ディスプレイ取説TD-E432/TD-E502/TD-E552/TD-E652/TD-E432D/TD-E502D


() () ()

000-.\..


1 C 2 C 3 C 4 C 1 C 2 C 3 C

<967B95D2955C8E F4390B32E6169>


平成24年財政投融資計画PDF出後8/016‐030


Q 23 A Q Q15 76 Q23 77

DE-6001 取扱説明書


40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

lecture

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

untitled

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

Gmech08.dvi

body.dvi

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

Transcription:

5 5.1 5.2 5.3 1700 Jean Le Rond d Alembert, (1717-1783) 2005

5. 1 123 5.1 5.2

124 5. 5.3 lumped mass modeling) 5. 1 5.4 x x A l ρ 5.4

5. 1 125 x 10 x y(x, t) y M(x, t) Q(x, t) E I 2 y/ 2 M = EI 2 y 2 (5.1) x z Q Q = M = EI 3 y 3 (5.2) Q(x + dx) {Q(x) + Q(x)/ dx} ( Q(x + dx) = Q(x) + Q(x) ) dx = EI 3 y 3 EI 4 y dx (5.3) 4 y ρadx

126 5. ρadx 2 y t 2 = EI 3 y 3 + ρadx 2 y t 2 ( EI 3 y 3 EI 4 y 4 dx = EI 4 y 4 dx ) (5.4) 2 y t 2 + EI 4 y ρa 4 = 0 (5.5) 2 = EI/ρA (5.5) y(x, t) = φ(x)e jωt (5.6) 2 d4 φ(x) dx 4 ω 2 φ(x) = 0 d 4 φ(x) ( ω ) 2 dx 4 φ(x) = 0 (5.7) x φ 5.7 φ(x) = De sx s ( ω ) 2 s 4 = 0 ω ω s = ±, ±j (5.8) φ(x) ω φ(x) = C 1 e x + C 2 e ω x + C 3 e j ω x + C 4 e j ω x (5.9)

5. 1 127 C 1 C 4 5.7 x φ(x) l ρ E A I x = 0 x = l φ(0) = 0 (5.10) d 2 φ(x) dx 2 = 0 (5.11) x=0 φ(l) = 0 (5.12) d 2 φ(x) dx 2 = 0 (5.13) x=l 5.9 C 1 C 4 C 1 e l ω C 1 + C 2 + C 3 + C 4 = 0 (5.14) C 1 + C 2 C 3 C 4 = 0 (5.15) + C2 e l ω + C3 e jl ω + C4 e jl ω = 0 (5.16)

128 5. C 1 e l ω + C2 e l ω C3 e jl ω C4 e jl ω = 0 (5.17) 5.14 5.15 C 1 = C 2 C 3 = C 4 C 2 e l ω + C2 e l ω C4 e jl ω + C4 e jl ω = 0 (5.18) C 2 e l ω + C2 e l ω + C4 e jl ω C4 e jl ω = 0 (5.19) 5.18 5.19 ( C 2 e l ω ) ω + e l = 0 (5.20) ω = 0 C 2 = 0 C 1 5.18 5.19 ( C 4 e jl ω ) ω e jl = 0 (5.21) C 4 = 0 C 4 = 0 ( ) ω 2sin l = 0 (5.22), Ω s

ω l = π, 2π, 3π, 4π ( π ) 2 EI Ω s = l ρa, ( 3π l 5. 1 129 ) 2 EI ρa, ( ) 2 2π EI l ρa, ( 4π l ) 2 EI ρa (5.23) 5.9 ( C 4 e jl Ω s e jl Ω ) s Csin sin ( ( l l Ωs Ωs ) ) ( ) iπx sin l (i = 1, 2, 3 ) (5.24) C 5.4 x = 0

130 5. φ(0) = 0 (5.25) dφ(x) dx = 0 (5.26) x=0 x = l d 2 φ(x) dx 2 d 3 φ(x) dx 3 = 0 x=l = 0 x=l (5.27) 5.25 5.27 C 1 + C 2 + C 3 + C 4 = 0 C 1 e l ω C 1 e l ω + C2 e l ω C2 e l ω (C 1 C 2 ) + j(c 3 C 4 ) = 0 C3 e jl ω C3 e jl ω C4 e jl ω = 0 + C4 e jl ω = 0 (5.28) 1 1 1 1 C 1 0 1 1 j j C 2 0 e l ω e l ω e jl ω e jl ω = e l ω e l ω je jl ω je jl C 3 0 ω 0 C 4

5. 2 131 [ 1 2 (1 + j)el ω + 1 2 ( 1 + j)e l ω ω e jl 1 2 ( 1 + j)el ω 1 2 (1 + j)e l ω ω e jl 1 2 (1 + j)el ω 1 2 ( 1 + j)e l ω ] [ ] 0 [ C3 C 4 = 0 [ ] [ ] [ ] a11 a 12 C3 0 = a 21 a 22 C 4 0 ω je jl 1 2 ( 1 + j)el ω + 1 2 (1 + j)e l ω + je jl ω ] a 11 a 22 a 12 a 21 = 0 (5.29) 5.29 5. 2 5.2 T l 2 T x l x dx t y(x, t) y(x, t) y

132 5. ρ ρdx y 2 y/ t 2 x T y T y (5.30) x + dx y y x y/ x dx ( ) x y dx y + ( ) y dx (5.31) T (x + dx) y ( T + T ) { y dx + ( ) } { y y dx T + ( ) } y dx (5.32) ρdx 2 y t 2 ρ 2 y t 2 ρ 2 y t 2 = T = T = T 2 y 2 5.33 { y + ( ) y ( ) } y dx T t (5.33)

5. 2 133 ρ 2 y t 2 2 y t 2 2 y t 2 = T 2 y 2 = T ρ 2 y 2 = 2 2 y 2 (5.34) 5.34 (wave equation) = T/ρ y(x, t) y(x, t) = φ(x)e jωt (5.35) φ(x) x ω 5.35 5.34 ω 2 φ(x)e jωt = 2 d2 φ(x) dx 2 e jωt d 2 φ(x) ( ω ) 2 dx 2 + φ(x) = 0 (5.36) 5.36 ( ω ) ( ω ) φ(x) = A os x + B sin x (5.37) A B 2 osine sine

134 5. φ(0) = 0 φ(l) = 0 (5.38) 5.37 B sin A = 0 ( ) ωl = 0 (5.39) A B A = 0 5.39 B sin ( ) ωl = 0 (5.40) ωl = π, 2π, 3π (5.41) ω 1 Ω i (i = 1, 2, 3, ) Ω i = iπ l = iπ l T (i = 1, 2, 3 ) (5.42) ρ i 5.42 Ω i 5.37 ω A = 0 ( ) iπ φ(x) = B sin l x (i = 1, 2, 3 ) (5.43) 1 2 5.5

5. 2 135 } T D S P Q L [ h 5.5 1 2 : (a) 1 (b) 2 1 2 1 (5.37)

136 5. 5. 3 5.6 a1 440Hz. E = 206GPa ρ = 7860kg/m 3 l = 1m φ = 1.175mm T [N] 1) 5.7 E = 206GPa ρ = 7860kg/m 3 h = 0.6mm 440Hz 1) JIS SWRS82A SWRS87A SWRS92A 0.80 0.95 1/2 0.2mm 90

5. 3 137 5.6 a1 5.7