2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

Size: px
Start display at page:

Download "2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ("

Transcription

1 (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2 F (x, y 2 x, y = F (x, y ( dx y = y(x ( I (solution y (x = F (x, y(x x I ( I I C y = Ce x R = (, dx = y (2

2 2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( xy (2 y = Ce x C ( y = Ce x (x 0, y 0 (y 0 = Ce x 0 Ce x 0 = y 0 (, y x, y x y f(x, y C f(x, y = C C C C ( C f(x, y = e x y e x y = C y = Ce x C f(x, y = C : C C C 2 f(x, y = C f(x, y = C 2 f(x, y = C = C 2 (x, y C C 2 x y ( f(x, y = C y x y

3 3 y = y(x ( y(x C C y(x y = y(x e x y = C y = y(x x e x x y + e dx = e x y(x + e x y (x = 0 ( y(x y y = y(x C (2 C (2 C ( y = Ce x (2 y = Ce x C f(x, y = C x y = y(x ( xy = C (C 0 (2 x + y2 2 = C (3 x y2 = C (C > ( F (x, y x y F (x, y = g(xh(y h(y 0 dx = g(xh(y (3 h(y dx = g(x x ( g(x dx = h(y dx dx = y (x h(y(x dx = h(y

4 4 g(x G(x, C = C 2 C h(y H(y C, C 2 H(y + C = G(x + C 2 H(y G(x = C (3 y = y(x (C h(y = 0 y y 0 y(x = y 0 (3 x + y2 2 = C (2 dx = y y = y(x (x, y y dx = y y = dx c log y = x + c y = ±e x+c = ±e c e x = Ce x (C = ±e c C 0 y = 0 C = x + y2 2 = C y = Ce x

5 5 2 t x(t x (t x(t k x (t = kx(t dx dt = kx dx x = k dt x(t = Ce kt x(0 = C t x( = Ce k = 2C e k = 2 t Ce tk = C(e k t = C2 t 3 ( α ( β ( γ ( k t ( x(t dx dt = kx k k x(t = Ce kt C = x(0 e kt = t T 2 e kt = log 2 T = k T 2 k x(t = C(e kt t T = C2 t T 3 8 β γ 3 t 3 x(t = C2 t β γ 37 t 37 x(t = C2 t 30 4 ( t x(t a x (t x(t a (x(t a > 0 x (t < 0 k dx dt = k(x a x (t = k(x(t a dx x a = k dt log x a = kt + c x = x(t = a ± e c e kt = a + Ce kt (C = ±e c.

6 (t = ( dx = y2 (2 dx = y (3 dx = xy (4 dx = e y 5 x km y(x ( k > 0 k x y(t dt = y(x ( x ky(x = y (x y(x = Ce kx 000 km 900 C = 000, e k = 0.9 y(x = x 6 x(t a x (t x(t a x(t a x(t k > 0 dx dt = kx(a x ( dx x(a x = k dt = kt + c dx x(a x = ( a x + dx = a x a log x a x ±e ac = C x a x = Ceakt x = aceakt + Ce akt = a + C e akt t a C C 0 x = a a =, k =

7 m t v(t mv (t mg (g v(t kv(t (k mv (t = mg kv(t m mg kv dv = dt = t + c m k log mg kv = t + c C = ±e ck/m mg kv = Ce kt/m v = v(t = k (mg Ce kt/m v(0 = 0 C = mg v(t = mg k ( e kt/m v(t t mg k 4 ( dx = xy2 (2 dx = y2 y 2 (3 dx = y2 + (4 dx = ex+y 2.2 dx = F (x, y

8 8 y = y(x x = x 0 y(x y 0 dx = F (x, y, y(x 0 = y 0 y = y(x x t t = t 0 ( 8 t = 0 t x = x(t dx dt = kx, x(0 = C x(t = Ce kt x(0 = C = x(t = e kt x(t t 9 dx = y2, y(0 = y = y(0 = C = x + C y(x = x x = (, (x > y = y(x x < x > 5 ( (3 (5 (7 dx = xy, y(0 = (2 dx = y2, dx = y2, y(0 = 0 (4 dx = y2 +, y(0 = (6 dx = y2 y 2, y(0 = 2 (8 y(0 = dx = xy2, y(0 = dx = e y, y(0 = 0 dx = ex+y, y(0 =

9 9 2.3 ( a(x, b(x y = y(x dx = a(xy + b(x (4 y b(x = 0 ( dx = a(xy a(x A(x c log y = a(x dx = A(x + c C = ±e c y = Ce A(x C C(x y = C(xe A(x (4 (C (x + A (xc(xe A(x = a(xc(xe A(x + b(x C (x = b(xe A(x ( y(x = C(xe A(x = b(xe A(x dx e A(x (5 (5 ( y (x = b(xe A(x dx A (xe A(x + b(xe A(x e A(x = a(xy + b(x (5 (4 (4 (5 y = y(x (4 z(x = e A(x y(x z (x = A (xe A(x y(x + e A(x y (x = a(xe A(x y(x + e A(x {a(xy(x + b(x} = b(xe A(x z(x = b(xe A(x dx ( y(x = z(xe A(x = b(xe A(x dx e A(x (4 (5 0 = 2xy + ex2 dx dx = 2xy

10 0 y = Ce x2 C C(x y = C(xe x2 dx 2xy = C (xe x2 = e x2 C (x = C(x = x + C (C y(x = (x + Ce x2 y(0 = 0 C = 0 y = xe x2 t E(t I(t R L LI (t + RI(t = E(t di dt = R L I + E(t (6 L ( I(t = E(te R L t dt e R L t L I(t (i E(t = E ( ( ( I(t = Ee R L t dt e R E L t = L R e R L t + C e R L t = E R + R Ce L t (C I(0 = 0 ( 0 C = E/R I(t = E R ( e R L t (ii E(t = E cos ωt (E, ω C(t = E e R L t cos ωt dt = E ( L L Re e ( R L +iωt dt ( = E L Re e ( R L +iωt R + iω + C = E e ( R L t R cos ωt + ω sin ωt L + C L R 2 L + ω L 2 2 I(t = E L R cos ωt + ω sin ωt L + Ce R R 2 + ω L 2 L t R cos ωt + Lω sin ωt = E R 2 + L 2 ω Ce R L t

11 (C I(0 = 0 C = ER/(R 2 + L 2 ω 2 I(t = E R(cos ωt e R L t + Lω sin ωt R 2 + L 2 ω 2 E = L = R = ω = E(t ( I(t ( ( (i, (ii Euler i = x e ix = exp(ix = (ix n n=0 n! (7 x (7 i 2k = ( k cos x sin x Taylor e ix = (ix n n=0 n! = k=0 (ix 2k (2k! + (ix 2k+ (2k +! k=0 = cos x + i sin x e ix = cos x + i sin x. Euler α = a + bi (a, b R a = Re α b = Im α cos x = Re e ix, sin x = Im e ix x, y e x+iy = exp(x + iy = e x e iy = e x (cos y + i sin y e x +iy e x 2+iy 2 = e (x +x 2 +i(y +y 2 α (α 0 d dx eαx = αe αx, e αx dx = eαx α + C (C

12 2 ( α = a + bi (a, b R e αx = e ax (cos bx + i sin bx ( e e ax αx cos bx dx = Re α + C, ( e e ax αx sin bx dx = Im α + C (C 2 6 ( dx = y x (2 dx = y + x2 (3 7 ( (3 dx = xy + e x2 /2 dx = y x, y(0 = 0 (2 dx = y + x2, y(0 = dx = xy + /2 e x2, y(0 = 0 8 E(t = Ee at (E, a I(0 = 0 I(t E = L = R =, a = 2 t 0 I(t I(t 3 2 a(x, b(x, f(x y = y(x dx + a(x + b(xy = f(x 2 dx 2 a(x, b(x a, b dx + a + by = f(x (8 2 dx 2 3. f(x = 0 dx + a + by = 0 (9 2 dx

13 3 y = y(x R = (, x (9 y(x R : (9 y (x = ay (x by(x (0 y(x 2 (0 y (x y(x 3 (0 2 y(x 4 y(x (9 R C (R x, x 2 + a e ax, sin ax, cos ax C (R y(x z(x C (R a b ay(x + bz(x C (R C (R R C (R C (R D = d dx Dy(x = d dx y(x = y (x y(x, z(x C (R a, b R (y(x C (R D(ay(x + bz(x = ady(x + bdz(x D C (R C (R R D 2, D 3,... D 2 y(x 2 y (x D 0 = I (, D, D 2 C (R C (R P (D = D 2 + ad + bi (a, b R C (R C (R 2 (differential operator P (Dy(x = y (x + ay (x + by(x (9 P (D : C (R C (R (kernel Ker P (D = {y(x C (R P (Dy(x = 0} C (R Ker P (D R C (R, C (C α = a + bi (a, b R e αx = e ax (cos by + i sin by

14 4 C (R, C y(x z(x C (R, C α, β αy(x + βz(x C (R, C C (R, C C C (R, C C (R, C D = d dx Dy(x = d dx y(x = y (x (y(x C (R, C y(x, z(x C (R, C α, β C D(αy(x + βz(x = αdy(x + βdz(x D C a,... a m C Q(D = D m + a D m + + a m D + a m I (a,..., a m C C (R, C C (R, C C (m (differential operator Ker C Q(D = {y(x C (R, C Q(Dy(x = 0} Ker C Q(D C 2 P (D = D 2 + ad + b D λ P (λ = λ 2 + aλ + b P (D (9 (characteristic polynomial (2 P (λ = 0 α, β λ P (λ P (λ = λ 2 + aλ + b = (λ α(λ β D αi D βi y(x C (R, C (D αi(d βiy(x = (D αi(y (x βy(x = D(y (x βy(x α(y (x βy(x = y (x (α + βy (x + αβy(x = y (x + ay (x + by(x = P (Dy(x P (λ 2 P (D D αi D βi α β

15 5 P (λ = (λ α(λ β α β Ker C P (D = Ker C (D αi Ker C (D βi ( P (Dy(x = 0 y(x C (R, C y(x = y (x + y 2 (x, (D αiy (x = 0, (D βiy 2 (x = 0 y (x, y 2 (x C (R, C y (x, y 2 (x C (R, C (D αiy (x = 0 (D βiy 2 (x = 0 y(x = y (x + y 2 (x P (Dy(x = 0 : y(x Ker C P (D = (λ α (λ β β α β α I = (D αi (D βi ( β α β α y (x = (D βiy(x = β α β α (y (x βy(x, y 2 (x = (D αiy(x = β α β α (y (x αy(x (D αiy (x = (D αi(d βiy(x = P (Dy(x = 0, (D βiy 2 (x = (D βi(d αiy(x = P (Dy(x = 0 y (x Ker C (D αi, y 2 (x Ker C (D βi ( y(x = Iy(x = (D αiy(x β α β α (D βiy(x = y (x + y 2 (x y (x, y 2 (x y (x y 2 (x z (x Ker C (D αi z 2 (x Ker C (D βi y(x = z (x + z 2 (x u(x := y (x z (x = z 2 (x y 2 (x Ker C (D αi Ker C (D βi (:= ( u(x = Iu(x = (D αiu(x (D βiu(x = 0 β α β α z (x = y (x, z 2 (x = y 2 (x y (x y 2 (x

16 6 2 α = a + bi (a, b R C D αi : C (R, C C (R, C Ker C (D αi C (R, C C e αx = e ax (cos bx + i sin bx : y(x C (R, C z(x = e αx y(x y(x = e αx z(x (D αiy(x = y (x αy(x = αe αx z(x + e αx z (x αe αx z(x = e αx z (x (D αiy(x = 0 z (x = 0 z (x = 0 z(x y(x Ker C (D αi C y(x = Ce αx 2 P (λ = (λ α(λ β α β C P (D : C (R, C C (R, C Ker C P (D C 2 e αx e βx P (Dy(x = 0 y(x C (R, C y(x = C e αx + C 2 e βx C, C 2 y(x P (Dy(x = 0 α = β 3 α Ker C (D αi 2 = {y(x C (R, C (D αi 2 y(x = 0} C 2 e αx xe αx : y(x C (R, C z(x = e αx y(x 2 (D αi(e αx z(x = e αx z (x (D αi 2 y(x = (D αi(d αi(e αx z(x = (D αi(e αx z (x = e αx z (x (D αi 2 y(x = 0 z (x = 0 z (x = 0 z (x = C z(x = C x + C 2 C 2 z(x = C x + C 2 z (x = 0 Ker C (D αi 2 = {(C x + C 2 e αx C, C 2 C} y(x = (C x + C 2 e αx y(0 = C 2 y( = (C + C 2 e α C C 2 e αx xe αx Ker C (D αi 2 (9

17 7 a, b P (D = D 2 +ad+bi λ 2 +aλ+b = 0 3 a 2 4b > 0 α, β P (Dy(x = 0 y(x C, C 2 y(x = C e αx + C 2 e βx y(x C, C 2 C, C 2 e αx e βx y(x y(x y(0 = C + C 2 y( = C e α + C 2 e β C, C 2 C C 2 2 P (λ = 0 α, β P (Dy(x = 0 y(x Ker P (D R 2 e αx e βx P (Dy(x = 0 y(x C (R C, C 2 y(x = C e αx + C 2 e βx 2 dx 2 dx 2y = 0 λ 2 λ 2 = (λ 2(λ + = 0 C, C 2 y(x = C e 2x + C 2 e x a 2 4b = 0 α α = a 2 3 P (Dy(x = 0 y(x C, C 2 y(x = C e αx + C 2 xe αx y(x C, C 2 C, C 2 e αx xe αx y(x y(x y(0 = C y( = (C + C 2 e α C, C 2 C C 2 3 P (λ = 0 0 α P (Dy(x = 0 y(x R 2 e αx xe αx P (Dy(x = 0 y(x C (R C, C 2 y(x = C e αx + C 2 xe αx

18 8 3 dx dx + y = 0 λ 2 + 2λ + = (λ + 2 = 0 C, C 2 y(x = (C x + C 2 e x a 2 4b < 0 α, β λ 2 + aλ + b = (λ α(λ β α β β = α p, q α = p + qi e αx = e px+iqx = e px e iqx = e px (cos qx + i sin qx P (Dy(x = 0 y(x C, C 2 y(x = C e αx + C 2 e βx a, a 2, b, b 2 C = a + ib, C 2 = a 2 + ib 2 α β p, q α = p + iq, β = p iq (q > 0 y(x = C e αx + C 2 e βx = (a + ib e px (cos qx + i sin qx + (a 2 + ib 2 e px (cos qx i sin qx = e px {(a + a 2 cos qx + ( b + b 2 sin qx} + ie px {(b + b 2 cos qx + (a a 2 sin qx} y(x a = a 2, b + b 2 = 0 y(x = e px (2a cos qx 2b sin qx C = 2a, C 2 = 2b y(x = e px (C cos qx + C 2 sin qx (2

19 9 4 P (λ = 0 p, q (q > 0 α = p + iq, β = p iq P (Dy(x = 0 y(x R 2 e px cos qx e px sin qx P (Dy(x = 0 y(x C (R C, C 2 y(x = e px (C cos qx + C 2 sin qx 4 dx dx + 5y = 0 λ 2 + 4λ + 5 = (λ + 2 i(λ i = 0 ( 2 ± i C, C 2 y(x = e 2x (C cos x + C 2 sin x 5 m 0 k x t x = x(t q = (k m d 2 x dt 2 + q2 x = 0 λ 2 + q 2 = (λ iq(λ + iq = 0 C, C 2 x(t = C cos qt + C 2 sin qt q 2π q 9 ( (4 dx 2 dx 6y = 0 (2 4d2 y dx 2 4 dx 3y = 0 (3 dx dx = 0 dx dx + 9y = 0 (5 dx 2 + 4y = 0 (6 2d2 y dx dx + y = (9 x y(x x y(x y (x

20 20 6 y = y(x dx 2 dx 2y = 0 y(0 =, y (0 = 0 C, C 2 y(x = C e 2x + C 2 e x y(0 = C + C 2 =, y (0 = 2C C 2 = 0 C = 3, C 2 = 2 3 y(x = 3 e2x e x 7 5 x(0 0 x (0 0 d 2 x dt 2 + q2 x = 0, x(0 =, x (0 = 0 x = x(t t x(t = cos qt x 0, y 0, y dx 2 + a dx + by = 0, y(x 0 = y 0, y (x 0 = y (3 y = y(x ( w(x = y(x + x 0 w(x w(0 = y(x 0 = y 0, w (0 = y (x 0 = y x 0 = 0 a 2 4b > 0 λ 2 + aλ + b = 0 2 α, β y(x = C e αx + C 2 e βx y(0 = C + C 2 = y 0, y (0 = αc + βc 2 = y ( ( ( C = α β C 2 y 0 y

21 2 β α = 0 C C 2 a 2 4b < 0 λ 2 + aλ + b = 0 2 p ± iq y(x = e px (C cos qx + C 2 sin qx y(0 = C = y 0, y (0 = pc + qc 2 = y C q 0 C 2 a 2 4b = 0 α y(x = (C x + C 2 e αx y(0 = C 2 C 2 y (x = α(c x + C 2 e αx + C e αx y (0 = C + αc 2 C 8 t x = x(t x(t d 2 x dt 2 + adx dt + bx = 0, x(0 =, x (0 = 0 a b ( x(t x(t ( a 2 4b < 0 q = 2 4b a2 x(t = e a 2 t ( cos qt + a 2q sin qt. ( (2 a 2 4b = 0 x(t = e a 2 t + a. 2 t (3 a 2 4b > 0 λ 2 + aλ + b = 0 2 α, β x(t = β α (βeαt αe βt. b = 4, a =, 4, 5 y(x

22 22 0 ( dx 2 dx 6y = 0, y(0 = 0, y (0 = (2 4 d2 y dx 4 2 dx 3y = 0, y(0 =, y (0 = 2 (3 dx dx = 0, y(0 =, y (0 = (4 dx dx + 9y = 0, y(0 =, y (0 = 2 (5 dx + 4y = 0, 2 y(0 = 0, y (0 = (6 2 d2 y dx dx + y = 0, y(0 =, y (0 = 3.3 f(x dx + a + by = f(x (4 2 dx y = y(x (4 y = y 0 (x y(x (4 y = y (x y (x = y(x y 0 (x dx + a + by = 0 (5 2 dx y = y (x (5 y(x = y 0 (x + y (x (4 = + (5 (4 (Heaviside D D C (R, C I 2 P (D = a 0 D m +a D m + +a m D +a m f, u C (R, C u(x = P (D f(x P (Du(x = f(x

23 23 u(x P (D v(x = f(x u(x v(x Ker P (D P (D u(x P (D f(x mod Ker P (D Ker P (D Ker P (D = (4 9 u(x = D f(x u (x = f(x u(x = f(x dx u(x 20 α u(x = D α f(x u (x αu(x = f(x u(x = e αx e αx f(x dx 4 α, β, γ C f(x C (R, C = Ker (D α(d β ( (D α(d β f(x = ( D α D β f(x (2 (3 D α (eγx f(x = e γx D + (γ α f(x (D α(d β f(x = α β : ( u(x ( D α f(x D β f(x (α β (D αu(x = f(x (D β((d αu(x = f(x. D β ((D α(d βu(x = ((D β(d αu(x = (D β((d αu(x = f(x. (2 v(x = f(x D + (γ α (D α(e γx v(x = (e γx v(x αe γx v(x = e γx (v (x + (γ αv(x = e γx (D + (γ αv(x = e γx f(x.

24 24 D α (eγx f(x = e γx v(x = e γx D + (γ α f(x. (3 u(x ((D α(d βu(x = { ( (D β (D α α β D α f(x ( } (D α (D β D β f(x (3 = {(D βf(x (D αf(x} = f(x α β 5 α 0 f(x ( D α f(x = α + α D + 2 α 3 D2 + f(x = α f(x α 2 f (x α 3 f (x f(x k D k+ f(x = f (k+ (x = 0 : t k ( t( + t + + t k = t k+ t D α ( α ( D + α D + + α k Dk = Dk+ αk+ f(x k D k+ f(x = 0 ( α ( D + α D + + α ( k Dk f(x = Dk+ f(x = f(x αk+ ( (D α α α D 2 Dk f(x αk+ = ( α ( D + α D + + α k Dk f(x = f(x ( D α f(x = α + α D Dk f(x αk+ D k+ f(x = D k+2 f(x = = 0

25 25 4 ( 20 (4 ( D α D β f(x = (e βx e βx f(x dx D α ( = e αx e (β αx e βx f(x dx dx 2 (4 f(x f(x = p(xe cx (p(x c (4 4 (2,(3 5 2 dx 2 dx 2y = x λ 2 λ 2 = (λ 2(λ + = 0 P (D = D 2 D 2 = (D 2(D + 4 (3 5 P (D x = 3 ( D 2 x D + x = ( D + 8 D2 + = ( 3 2 x (x = 2 x + 4 C, C 2 x 3 ( D + D2 x 22 y(x = C e 2x + C 2 e x 2 x + 4 dx 2 dx 2y = x2 e x P (D = D 2 D 2 = (D 2(D +

26 26 4 (3 (2 5 P (D (x2 e x = ( 3 D 2 (x2 e x D + (x2 e x = 3 ex ( D x2 D + 2 x2 = ( 3 ex + D + D 2 + x 2 + ( 3 ex D 8 D2 + = 3 ex (x 2 + 2x ( 3 ex 2 x2 + 2 x 4 = (C, C 2 ( 2 x2 2 x 3 e x 4 y(x = C e 2x + C 2 e x ( 2 x2 + 2 x + 3 e x 4 x 2 23 dx 2 + y = (x + 2 ex dx (D ((x + 2 ex = ( D D ((x + ex = (e x D D (x + = ( e x ( D 2 x2 + x = e x ( ( 6 D 2 x2 + x = e x x3 + 2 x2 (C, C 2 y(x = ( 6 x3 + 2 x2 + C x + C 2 e x 24 dx 2 2 dx + y = xe x 4 (,(2 5 (D 2 (e x = ( D D (e x x = ( e x D D 2 x = (e ( x 2 D 4 D x = ( (e x D 2 x 4 ( = e x D 2 2 x = e ( x ( D 2 x 4 = (x + e x 4

27 27 (C, C 2 y(x = (C x + C 2 e x + (x + e x 4 f(x = ce γx (c P (λ 0 6 P (D = D 2 + ad + b γ P (De γx = P (γe γx P (γ 0 P (D eγx = P (γ eγx. : De γx = γe γx P (De γx = γ 2 e γx + aγe γx + be γx = P (γe γx ( P (γ 0 P (D P (γ eγx = e γx P (D eγx = P (γ eγx. 25 dx 2 2 dx + y = e x P (D = D 2 2D +, P ( = y(x = P (D e x = P ( e x = 4 e x P (λ = (λ 2 C, C 2 y(x = (C x + C 2 e x + 4 e x f(x = p (xe a x + + p m (xe a mx (p (x,..., p m (x P (Dy j (x = p j (xe a jx y j (x j P (D P (D(y (x + + y m (x = f(x

28 28 26 dx + 2 dx = e x + 2e 2x P (D = D 2 + D = D(D + P (Dy (x = e x y (x P ( = 0 6 y (x = P (D e x = D e x D + e x = e x D e x D = e x ( + D + D 2 + e x x = (x + e x P (Dy 2 (x = 2e 2x y 2 (x P ( 2 = 2 6 y 2 (x = P ( 2 2e 2x = e 2x y(x = y (x + y 2 (x = (x + e x + e 2x y(x = C e x + C 2 (x + e x + e 2x = ( x + C e x + e 2x + C 2 C, C 2 C = C ( (3 dx 2 + dx 6y = x (2 dx 2 2 dx = xe2x dx 2 2 dx + y = x + (4 dx 2 + dx 6y = e 2x + x (4 f(x f(x = p(xe ax cos bx f(x = p(xe ax sin bx (p(x a, b f(x = p(xe (a+ibx (4 z(x P (D(Re z(x = Re (P (Dz(x = Re (p(xe (a+ibx = p(xe ax cos bx, P (D(Im z(x = Im (P (Dz(x = Im (p(xe (a+ibx = p(xe ax sin bx 27 dx 2 dt 2 + 2dx dt + 2x = cos ωt, x(0 = x (0 = 0. 8 a = 2, b = 2 ω > 0 cos ωt cos ωt = Re(e iωt d 2 z dt + 2dz 2 dt + 2z = eiωt

29 29 z = z(t x(t = Re z(t D = d dt P (D = D 2 + 2D + 2 P (iω = 2 ω 2 + 2iω 0 6 z(t = P (iω eiωt = 2 ω 2 + 2iω eiωt = 2 ω2 2iω e iωt 4 + ω 4 x(t = Re z(t = 2 ω2 2ω cos ωt + sin ωt 4 + ω4 4 + ω4 ± i C, C 2 x(t = e t (C cos t + C 2 sin t + 2 ω2 2ω cos ωt + sin ωt 4 + ω4 4 + ω4 x(0 = x (0 = 0 x (t = e t ( C cos t C 2 sin t C sin t + C 2 cos t ω(2 ω2 sin ωt + 2ω2 cos ωt 4 + ω ω4 C = ω ω 4, C 2 = 2 + ω2 4 + ω 4 x(t = 4 + ω 4 e t {(ω 2 2 cos t (2 + ω 2 sin t} + 2 ω2 2ω cos ωt + sin ωt 4 + ω4 4 + ω4 e t t 0 a(ω (2 ω 2 a(ω = 4 + ω ( 2 2ω = 4 + ω ω 4. a(ω ω lim ω a(ω = 0 ω = π, ω = 2π x(t x x t t 28 dx y = x sin x 2 dx d 2 z dx + 2 dz + 2z = 2 xeix dx

30 30 z = z(x P (D = D 2 + 2D + 2 P (λ = (λ + i(λ + + i z(x = P (D (xeix = ( 2i D + i (xe ix D + + i ( = eix 2i D + x D + + 2i = eix 2i eix ( D + x 2i = eix eix (x 2i 2i y(x = Im z(x = ( + 2i ( + 2i x ( + 2i 2 y(x = e x (C cos x + C 2 sin x + 2 ( + 2i D + ( 2 2i = 5 x + ( 2 5 x + 4 ( cos x x 2 sin x 25 x 2 + 4i 25 e ix ( 2 5 x + 4 ( cos x x 2 sin x 25 ( (3 dx dx + 5y = cos x (2 dx 2 + y = sin x dx + y = x cos x (4 2 dx + y = 2 e x cos x 3 ( (2 (3 (4 dx + 2 dx 6y = x, y(0 = 0, y (0 = 0 dx 2 2 dx = xe2x, y(0 = 0, y (0 = dx + y = sin x, 2 y(0 = 0, y (0 = 0 dx + y = 2 e x cos x, y(0 =, y (0 = 0

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

24 3, 28 7 5.............................................. 5........................................ 5..2 ( )................................ 6.2....................................... 7 2 2............................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information