Jpn. Soc. Atom. Env. 50(6): (2015)

Similar documents
ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

スライド タイトルなし

渡辺(2309)_渡辺(2309)

X線分析の進歩36 別刷

....PDF.pmd

技術研究報告第26号

Microsoft Word - 02 【資料1-1】報告書(パブコメ以降修正 微修正)

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

国土技術政策総合研究所 研究資料

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Vol. No. Honda, et al.,

振動充填燃料の粒子焼結試験実施計画書

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

塗装深み感の要因解析

06_学術_関節単純X線画像における_1c_梅木様.indd

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

2 94

;HgS 1998 ;Fe2O kg ; kg 1 Minami et al., S 33 S 34 S 36 S % 0.75% 4.21% S 34 S 34 S Ish

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Fig. 1 Photography of exercise test by Arm Crank Ergometer. Fig. 2 Photography of exercise test by chair with caster. Arm Crank Ergometer Wheelchair T

プラズマ核融合学会誌11月【81‐11】/小特集5

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

電子部品はんだ接合部の熱疲労寿命解析


EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

WLTC WLTC WLTC JC0 WLTC 1 LPG CO NOx 1 LPG NMHC 1 LPG PM 1

MKS-05 "TERRA-Pプラス 日本語訳取扱説明書

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

0900906,繊維学会ファイバ8月号/報文-01-高橋

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004


<4D F736F F D F90858C6E5F C B B B838B>


大学における原価計算教育の現状と課題

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

倉田.indd

Appropriate Disaster Preparedness Education in Classrooms According to Students Grade, from Kindergarten through High School Contrivance of an Educati

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

THE JAPANESE JOURNAL OF PERSONALITY 2007, Vol. 15 No. 2, 217–227

浜松医科大学紀要

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis



Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

Transcription:

266 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 * Volatile Organic Compounds and Air Quality Assessment Using Ozone Formation Potential in Refueling Loss Tests and Diurnal Breathing Loss Tests Using a Gasoline Fuel with Low Olefins Hiroyuki Hagino 1, Tazuko Morikawa 1, Kenichi Akiyama 1, Sousuke Sasaki 1 * Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki 305 0822, Japan *Corresponding author: (E-mail) ssosuke@jari.or.jp In this study, the volatile organic compounds (VOCs) in evaporative gas from gasoline fuel were observed and the air quality evaluated during the refueling loss tests and the diurnal breathing loss (DBL) tests according to a gasoline fuel with a lower content of olefins compared to retail market fuels. The gasoline vapor compositions observed during the refueling loss tests were compared to the estimation calculated from the measured liquid gasoline composition using Raoult s law. As a result, there was no significant difference between the observations and the estimations of the gasoline vapor compositions according to refueling flows and environmental temperatures. During the DBL tests, the aromatics were predominant in the day 1 DBL, while the paraffins were predominant after the day 2 DBL. It is indicated that the permeation (the leakage of fuel from the fuel tank and tube) contributed to the day 1 results and the breakthrough (the overflow of fuel vapor from the carbon on the recovery equipment (canister)) To evaluate the air quality using the gasoline vapor composition data, the ozone formation potential (OFP) was performed using the maximum incremental reactivity (MIR) with the VOC data on the refueling loss and the DBL. It was indicated that the OFP of the gasoline fuel vapor in this study is similar to the OFP of the vapor from the refueling and breakthrough on the DBL. Furthermore, it is indicated that the olefin in the gasoline fuels can also effectively contribute to the OFP weighted emissions (OFP EW ) according to a comparison with the gasoline compositions in these test fuels and widely available fuels in Tokyo, and the values reported in a previous study. The OFP of the fuel vapors (e.g., refueling and breakthrough) and other emissions (e.g., biogenic VOC and stationary source) were estimated by the emission data from several prefectures. It indicated that the contribution of the refueling and breakthrough varied depending on the area. Furthermore, it was estimated that the OFP EW of the fuel vapors contributed 4 21 of the total OFP EW of the VOC emissions during August of 2010. Key words : VOC, gasoline passenger car, refueling loss, evaporative emissions, breakthrough emissions 1. 2012 1,172 1,142 30 3 (0.3 ) 0 (0 ) 2015 (VOC, Volatile Organic Compound) (NO X ) VOC 200 2015 Carter, 1994 (Atkinson, 2000) VOC (NMHC, Non- Methane HydroCarbon) VOC

50 6 2015 267 NMHC VOC VOC 2008; 2010 VOC 2007; 2009 VOC (LPG) 2007; 2009 (OFP, Ozone Formation Potential) VOC VOC 2008; 2010 2007; 2009 2012; 2003 Stage 1 2012 2012; California Environmental Protection Agency Air Resource Board, 2012 VOC 2000 10.8 t/y 2013 10.6 t/y VOC 2000 7.6 2013 14.7 (VOC) 2015 Stage 2 (ORVR, Onboard Refueling Vapor Recovery) 2003 Stage 2 ORVR ORVR 2003; Environment Canada, 2010 (HSL, Hot Soak Loss) (DBL, Diurnal Breathing Loss) 2009; Yamada et al., 2015 DBL (SHED, Sealed Housing Evaporative Determination) 2009; Yamada et al., 2015 DBL HSL DBL 1 2 g/test 2 (Yamada et al., 2015) DBL (Yamada et al., 2015) VOC 2012 VOC (Yamada et al., 2015) VOC 2004; 2008 (Kirchstetter et al., 1999; Zhang et al., 2013) DBL DBL VOC OFP 2. 2. 1 Table 1 Certified Observed 62.9 kpa 35 2 200 L

268 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 Table 1 Specification of gasoline for this study. Table 2 Refueling Test conditions. Contents Certified Observed Density (15 ) 0.7409 g/cm 3 0.7417 g/cm 3 Octane rating RON 90.0 Reid vapor pressure, 63.7 kpa 62.9 kpa RVP (37.8 ) Distribution temperature 10 53.0 53.0 50 91.5 92.0 90 167.5 168.5 Hydrocarbons Aromatics 35.8 Olefins 2.3 Paraffins 60.0 Naphthenes 2.0 Elements Carbon 86.6 wt Hydrogen 13.4 wt Oxygen 0 wt Sulfur 0.0001 ppm Contents Dispensed fuel temperature Dispensed tank (environmental) temperature Fill rate Initial fill amount Total fill amount Soak time Sampling time table Conditions 20 10, 20, 30 25, 35, 45 L/min 4.5 L (10 of full (45 L)) 38.25 L (85 of full (45 L)) 16 h Before refueling: 5 s Refueling: 51, 66, 92 s End refueling: 5 s 2014 6 200 L 10 2005 1.5 L 45 L 0.5 L 2. 2 35 L/min 45 L/min (10 30 ) EPA (California Environmental Protection Agency Air Resource Board, 2012) Table 2 (Fig. 1) 50 L 20 Fig. 1 Outline of refueling loss measurement system. 20 38.44 L 1.2 38.25 L 10 30 200 L PA GL 40 1000 ppm 75 104

50 6 2015 269 Table 3 Analytical conditions for liquid fuel, refueling, and DBL test. Liquid fuel compositions Refueling test DBL test PONA* 1 (C3 C9) Hydrocarbons (C3 C9) CH 4 Light-end hydrocarbons (C2 C7) Mid-range hydrocarbons (C7 C13) Instrument 1st column 2nd column Detector Oven program Injection Shimazu C-2010 Rtx-5 (2 m 0.25 mm 1.0 μm) Petrostar (100 m 0.25 mm 0.5 μm) FID 250 5 (10 min) 5 /min 46 (53.3 min) 1.3 /min 200 (5 min) 250 0.2 μl Split ratio:100 Agilent 6890N DB-1 (60 m 0.25 mm 0.25 μm) FID 200 35 (5 min) 3 /min 200 (60 min) 3 /min 210 (2 min) 3 /min 250 150 Gas loop (0.1 ml) Split ratio: 50 Shimadzu C-14A (Precut column) Pora pack N (3 mm i.d. 1 m) (Main column) Shin pack Q (3 mm i.d. 1 m) Molecular sieve 13X (3 mm i.d. 0.5 m) Pora pack N (3 mm i.d. 0.2 m) FID 60 Precut column 80 Main column 60 60 1 ml Agilent 6890N CP-AL203/KCL (50 m 0.25 mm) FID 200 40 (10 min) 5 /min 160 8 /min (8 min) 150 10 ml or 100 ml Agilent 6890N Rtx-5 (3 m 0.25 mm 1 μm) Rtx-1 (100 m 0.25 mm 0.5 μm) FID 250 30 (25 min) 5 /min 46 (53.3 min) 1 /min 200 (4.5 min) 200 100 ml Carrier gas He He He He He * 1 PONA; P: Paraffins, O: Olefins, N: Naphthenes, A: Aromatics. 2. 3 DBL 2009; Yamada et al., 2015 24 2009; Yamada et al., 2015 (Yamada et al., 2015) 3 DBL (3 days-dbl) SHED 0.5 L 2 Run 1 Run 2 2. 4 VOC (GC-FID) VOC (THC, Total Hydro Carbon) DBL (Table 3) GS5100 GL 3. 3. 1 (vol ) (g/test) Fig. 2 VOC

270 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 Fig. 2 Contributions and carbon distribution of the VOC components for fuel and refueling vapor. Note) E: Oxygenated (ethyl tert-butyl ether (ETBE)), A: Aromatics, D: diolefines, O: Olefines, N: Naphthenes, I-P: i-paraffins, N-P: n-parafines. 2012 (Kirchstetter et al., 1999) (Zhang et al., 2013) 5(C5) 2-methyl butane (14 vol ) (Fig. 2) VOC (Fig. 3) Eq. (1) (Kirchstetter et al., 1999) 0 P i γ i x i P i (1) P i VOC i γ i 1 x i VOC i P 0 i VOC i i P i i (m i ) Eq. (2) P mi = i i pi VOC EPA EPI-Suite 25 (U.S.EPA, 2013) (2) Fig. 3 Comparison of molar fraction of the VOC pressure in the gaseous phase by observation and calculation. (Fig. 3) 25 (10 30 ) (25 45 L/min) SHED (2012) VOC FID THC CH 4 GC-FID VOC 25 35 45 L/min 10 0.27 0.32 0.33 g/l 20 0.32 0.35 0.41 g/l 30 0.41 0.40 0.37 g/l 30 2003 10 1.40 1.35 1.30 g/l 20 1.25

50 6 2015 271 1.20 1.15 g/l 30 1.10 1.05 1.00 g/l 5 8 0.5 1.1 g/l SHED (2012) 20 35 L/min 1.4 1.5 g/l 4 1.0 1.3 g/l (2003) 3 (0.7 2 g/l) 2 5 (2012) (75 104 ) GC-FID 1997 35 L/min 6.6 L/min 2012 (35 L/min) 7.3 L (38.25 L) 19 SHED EPA (Spillage) 0.08 g/l (U.S.EPA, 2008) VOC 3. 2 DBL THC SHED 3 days-dbl (Run 1) Fig. 4 Time profiles of temperature and concentrations of total hydrocarbon and during a diurnal breathing loss (DBL) test (Run 1). Fig. 5 Hydrocarbon (HC) emissions during a hot soak loss (HSL) and diurnal breathing loss (DBL) tests. Fig. 4 Reddy (1989) (ΔT) (Fig. 4) SHED THC 2 3 DBL THC Fig. 5 2 THC 5 g/test 3 7 g/test 3 days-dbl (Yamada et al., 2015) 3 7 g/test 9 3 DBL HSL Fig. 6 GC-FID VOC THC 108 16 HSL Fig. 6 A (35 ) 50 Run#2 Run#2 Day 1 10 25

272 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 Fig. 6 Contributions and carbon distribution of the VOC components for HSL and DBL. Note) E: Oxygenated (ethyl tert-butyl ether (ETBE)), A: Aromatics, D: diolefines, O: Olefines, N: Naphthenes, I-P: i-paraffins, N-P: n-parafines. 70 80 C4 10 (Yamada et al., 2015) Day 2 THC (98 ) 84 C4 C4 4 Day 3 C5 C6 (Fig. 6) DBL 1 2 VOC C5 3. 3 VOC OFP Carter, 1994; 2010; 2012; Yamada et al., 2015; Zhang et al., 2013 OH 2010; 2007 2012; Yamada et al., 2015 OFP OFP (MIR: Maximum Incremental Reactivity) Eq. (3) OFP i w i MIR i (3) w i VOC i (g/g) MIR i VOC i MIR (go 3 /gvoc) (Carter, 2012) OFP MIR (averaged weighted MIR) (Carter, 1994) SR (Specific Reactivity) (Gruden, 2003) MIR NO X VOC Carter, 1994; 2005 (Refueling) VOC (Fuel vapor) (Fig. 3) OFP OFP Fig. 7 2012 OFP OFP OFP 2012 2012 OFP (Fuel vapor, OFP 1.86) (Fuel vapor, OFP 1.56) OFP OFP 2012 (n 16) 2013 (n

50 6 2015 273 Fig. 7 Ozone formation potential (OFP) of VOCs in gasoline vapors predicted by liquid gasoline compositions ( Fuel Vapor in the graph) and observed by refueling tests. Note) A: Aromatics, NO: Naphthenes/Olefines, N: Naphthenes, O: Olefines, P: Paraffines. Fig. 9 Ozone formation potential (OFP) of VOCs in gasoline vapors during 3 Days-DBL test in SHED and liquid gasoline compositions ( Liquid Fuel in the graph), and previous 3-Days-DBL test (Yamada et al., 2015). Note) A: Aromatics, NO: Naphthenes/Olefines, N: Naphthenes, O: Olefines, P: Paraffines. Fig. 8 Ozone formation potential (OFP) of VOCs in gasoline vapor estimated by different liquid gasoline compositions. The fuels in Tokyo are sold on the retail market for each year. Note) A: Aromatics, NO: Naphthenes/Olefines, N: Naphthenes, O: Olefines, P: Paraffines. 15) 2014 (n 15) (Zhang et al., 2013) OFP Fig. 8 OFP (CaRFG3) 5.9 vol OFP 2 OFP (1.56) (1.53) Fig. 7 Fig. 8 (GB17930-2011) (Zhang et al., 2013) 28 vol OFP 3.29 2013 OFP 2.71 2013 (Liquid fuel) HSL 3 Days-DBL Day 1, Day 2, Day 3 OFP (Yamada et al., 2015) OFP (Fig. 9) (Fig. 7) (Liquid fuel) OFP DBL (Yamada et al., 2015) (Liquid fuel) OFP 2.92 (Yamada et al., 2015) 3.33 35 2 35 18 OFP Day 1 (Yamada et al., 2015) Day 1 OFP (2.64) (Yamada et al., 2015) (3.31) OFP Day 2 (1.38) Day 3 (1.54) (1.56) (Fig. 7) Fig. 2 Fig. 6 (Yamada et al., 2015) OFP 3.89 VOC OFP DBL VOC

274 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 Fig. 10 Emission weighted ozone formation potential (OFP EW ) of VOCs in refueling (gasoline car), refueling (underground storage tanks), car exhausts (running), car exhausts (start), DBL (permeation, other), DBL (breakthrough), anthropogenic combustion, anthropogenic evaporation, biogenic VOC at the typical prefectures. The VOC emission data used at August of 2010. (a) Comparison of OFP EW for car exhaust and gasoline evaporations (refueling and breakthrough) contribution to total emission. (b) Comparison of OFP EW for total emission and averaged O 3 concentrations at August of 2010. 3. 4 VOC OFP VOC VOC OFP VOC 8 OFP (Yamada et al., 2015) OFP 3.77 DBL 3.89 DBL 3.31 JEI-DB (JATOP Emission Inventory-Data Base) 2012; 2012 2010 8 OFP OFP EW (Emission weighted OFP) (go 3 / month) JEI-DB 2000 (Yamada et al., 2015) VOC VOC 2012 MIR (go 3 /gvoc) (Carter, 2012) OFP JEI-DB 2010 8 OFP EW VOC 58 VOC 54 VOC 8 JEI-DB MEGAN (The Model of Emissions of Gases and Aerosols from Nature) ver 2.10 (Jiang et al., 2012; Chatani et al., 2015) OFP EW VOC OFP EW Fig. 10(a) OFP EW VOC OFP EW 4 21 OFP EW DBL OFP EW 2012 OFP 3.12 (1.56) 1/2 DBL OFP 1/2 VOC 3 15 1 7

50 6 2015 275 VOC OFP EW Fig. 10(b) (O 3 ) OFP EW OFP EW OFP EW VOC VOC VOC NO X VOC 2010 8 4 21 4. DBL VOC DBL 1 2 VOC MIR OFP DBL OPF OFP OFP VOC OFP (3) VOC SS VOC 14 (2003) http://www.pecj.or.jp/ japanese/report/reserch/report-pdf/h15_2003/03cho4 3. pdf 2015. 8. 20 8 pp. 93 (2004). Atkinson, R.: Atmospheric chemistry of VOCs and NO X, Atmos. Environ., 34, 2063 2101 (2000). California Environmental Protection Agency Air Resource Board: California refueling emission standards and test procedures for 2001 and subsequent model motor vehicles (2012), http://www.arb.ca.gov/msprog/evap/ regact_phev/orvr_tst_procedures_clean.pdf 2015. 8. 20 Carter, W. P. L.: Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manage. Assoc., 44, 881 899 (1994). Carter, W. P. L.: SAPRC Atmospheric chemical mechanisms and VOC reactivity scales (2012), http://www.engr.ucr. edu/~carter/saprc/saprc07.xls 2015. 8. 20 Chatani, S., Matsunaga, S.N., Nakatsuka, S.: Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol, Atmos. Environ., 120, 38 50 (2015). PRTR 24 PRTR (2015) http://www.nite.go.jp/chem/prtr/det_ est24.html 2015. 8. 20 25 (2003) http://www.pecj.or.jp/japanese/ report/2013report/h25data/12w111.pdf 2015. 8. 20 Environment Canada: Gasoline and gasoline blend dispensing flow rate regulations (2010), http://www.ec. gc.ca/lcpe-cepa/default.asp?lang En&n 54FE5535-1 &wsdoc F069AA2D-C7A8 44D8 848B-EEDEB77C D4E9 2015. 8. 20

276 J. Jpn. Soc. Atmos. Environ. Vol. 50 No. 6 2015 Gruden, D.: 1.3.1 Ozone formation potential (Traffic and Environment, Springer, Berlin Heidelberg), p. 118 (2003). VOC 2008, 10 17 (2008). Jiang, X., Guenther, A., Duhl, T., Sakulyanontvittaya, T., Wang, X.: MEGAN version 2.10 User s Guide (2012), http://acd.ucar.edu/~guenther/megan/megan v2.10_beta/megan2.1_user_guide_05 07 2012.pdf 2015. 8. 20 4 3-2 VOC (2005) http://www.env.go.jp/council/former 2013/07air/y075 04/mat03 2.pdf 2015. 8. 20 24 3. (O X ) (2015) http://www.env.go.jp/air/osen/jokyo_h24/ rep03.pdf 2015. 8. 20 (2012) http://www.jsim. or.jp/news2012/document/120626/kankyo38_01.pdf 2015. 8. 20 (VOC) (VOC) 26 (2015) http://www.env.go.jp/air/osen/voc/h26- main.pdf 2015. 8. 20 49 (2009) http://www.mlit.go.jp/common/ 000190467.pdf 2015. 8. 20 Kirchstetter, T. W., Singer, B. C., Harley, R. A., Kendall, G. R., Hesson, J. M.: Impact of California reformulated gasoline motor vehicle emissions. 2. Volatile organic compound speciation and reactivity, Environ. Sci. Technol., 33, 329 336 (1999). JATOP JEI-DB (JATOP Emission Inventory-Data Base) 513 (2012). PM 2.5 VOC, PM NOx JATOP JPEC-2011AQ-02-08 (2012). 3 pp. 52 53 (2008). Reddy R. S.: Prediction of fuel vapor generation from a vehicle fuel tank as a function of fuel RVP and temperature, SAE Technical Paper Series, 890289 (1989). VOC 42, 219 233 (2007). VOC 44, 136 146 (2009). 2 19 3 (1997) http://www.fdma. go.jp/html/data/tuchi1903/pdf/190316ki61_h_2.pdf 2015. 8. 20 Jeeranut Suthawaree OH 45, 56 65 (2010). U.S. EPA: Emissions factors & AP 42, Compilation of air pollutant emission factors, transportation and marketing of petroleum liquids (2008), http://www.epa.gov/ ttnchie1/ap42/ch05/final/c05s02.pdf 2015. 8. 20 U.S. EPA: Estimation program interface (EPI) (2013), http:// www.epa.gov/oppt/exposure/pubs/episuite.htm 2015. 8. 20 VOC 47, 231 239 (2012). Yamada, H., Inomata, S., Tanimoto, H.: Evaporative emissions in three-day diurnal breathing loss tests on passenger cars for the Japanese market, Atmos. Environ., 107, 166 173 (2015). Zhang, Y., Wang, X., Zhang, Z., Lü, S., Shao, M., Lee, F. S. C., Yu, J.: Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ., 79, 110 118 (2013). 2015. 7. 8 2015. 9. 29

50 6 2015 277 * 305 0822 2530 (DBL) DBL 1 2 VOC C5 1 2 (MIR) (OFP) DBL OPF OPF OFP VOC OFP EW VOC OFP EW 2010 8 4 21