楕円曲線暗号と RSA 暗号の安全性比較

Similar documents

将来の暗号技術に関する安全性要件調査報告書

RSA署名方式の安全性を巡る研究動向について

21 Key Exchange method for portable terminal with direct input by user

ASF-01

楕円曲線暗号の整備動向 +楕円暗号の実装状況

<4D F736F F D20838A B F955C8E8682A982E796DA8E9F914F5F A815B FD B A5F E646F63>

電子マネー・システムにおけるセキュリティ対策:リスク管理に焦点を当てて


(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

( )

ISO/IEC 9798プロトコルの安全性評価

さぬきの安全2016-cs5-出力.indd

看護学科案内'16/表紙

<4D F736F F D F81798E518D6C8E9197BF33817A88C38D868B5A8F70834B D31292E646F63>

Block cipher

楕円曲線暗号の整備動向 +楕円暗号の実装状況

07-二村幸孝・出口大輔.indd

Microsoft PowerPoint SCOPE-presen

量子暗号通信の仕組みと開発動向


SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

第3 章 電子認証技術に関する国際動向

indd

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

公開鍵暗号技術の最新動向について

2016東奥義塾高等学校スクールガイド

01.P28-01

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

index calculus

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

mmuship_vol04.indd


2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,.

暗号モジュール試験及び認証制度 の動向

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

数学の基礎訓練I

ATR-01-D


「暗号/情報セキュリティ」

パナソニック技報

橡セキュリティポリシー雛形策定に関する調査報告書

0911_hyo1.eps

美唄市広報メロディー2014年1月号


YMS-VPN1_User_Manual

橡最新卒論


function2.pdf

PowerPoint プレゼンテーション

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

genus 2 Jacobi Pila Schoof 42 Adleman Huang Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen



min. z = 602.5x x 2 + 2

内閣官房情報セキュリティセンター(NISC)

shift/reset [13] 2 shift / reset shift reset k call/cc reset shift k shift (...) k 1 + shift(fun k -> 2 * (k 3)) k 2 * (1 + 3) 8 reset shift reset (..

[1] [2] [3] (RTT) 2. Android OS Android OS Google OS 69.7% [4] 1 Android Linux [5] Linux OS Android Runtime Dalvik Dalvik UI Application(Home,T

Transcription:

RSA, RSA RSA 7 NIST SP-7 Neal Koblitz Victor Miller ECDLP (Elliptic Curve Discrete Logarithm Problem) RSA Blu-ray AACS (Advanced Access Control System) DTCP (Digital Transmission Content Protection) RSA ECC Challenge RSA (ECDLP) E ( GF (p) y = x + ax + b GF ( n ) y + xy = x + ax + b) S S S T T = [d]s d Anomalous, Supersingular ECDLP Pollard ECDLP RSA (NICT) (SCIS ) RSA []

ヒストグラム...7. 度頻.. 頻度理論値..........7.........7.........7...... m ore データ区間 (-bit ) E S T (E, S, T ) T = [d]s d [, n ] ( n ) [u]s + [v]t = [u ]S + [v ]T u, v, u, v [v v ]T = [u u ]S d = (v v )(u u ) mod n ECDLP u, v, u, v (u u, v v ) Paul L H : S {,,..., L} L H f : S S f(x) = X + [a i ]S + [b i ]T, (H(X) = i) a, b,..., a L, b L [, n ] f S X f S {X, X,...} X i = f(x i )(i ) X X [u ]S + [v ]T S, T f X = f(x ) [u ]S + [v ]T S, T X i = [u i]s + [v i]t, (i ) S X i ( ) X s+t X t i s + t X i = X i s X i, X i s i X i = X i s [u i ]S + [v i ]T = X i = X i s = [u i s ]S + [v i s ]T [u]s + [v]t = [u ]S + [v ]T X i (E, S, T ) f

NIST SP-7 Security Parameter bit Block FFC IFC ECC (DSA,DH) (RSA) (ECDSA) TDES L = N = k = f = TDES L = N = k = f = AES- L = 7 N = k = 7 f = AES- L = 7 N = k = 7 f = AES- L = N = k = f = + L:, N:, k:, f: ANSI X. ECDLP n πn/ 7G MIPS. 7. 7. 77.. {X, X,...} πn + θ Iteration [, ] Koblitz. ECDLP [, ] ECDLP µ = πn/ = %. % 7% /. NIST SP-7 ANSI X. [] ECDLP. MIPS Odlyzko.% MIPS [] Jaguar.7 FLOPS (.7 MIPS) [] ECDLP Jaguar

bit ( ) Report ECC RSA NIST [] Lenstra [] RSA Labs [7] 7 NESSIE [] IETF [] ECRYPT II [] ECDLP GNFS year ECC ECCK ECCp GNFS 7 7 7 7 7 7 7 (ECC) (RSA). Pollard- ECDLP ECDLP

bit / bit / 7.. 7. 7.7 7. 7. 7..7 7. 7.77...77 7..... 7....7 (Intel Core Quad CPU. GHz) (factor base) (relation) CPU Lanczos Wiedemann. -bit -bit iteration

処理回数 / 秒 素体楕円曲線 冪楕円曲線 ビット数.% %... CPU Jacobian C Certicom Certicom Challenge ECCp- 7 ECC- (CPU MHz []) [] [] CPU bit 7 cycle (Pentium III) cycle [] ECC- Cell SPU 7cycle(

( ) Koblitz (bit) (bit) (bit).7...7. 7..... 7..7.7.7.7 77. 7.. 7. 7. 7....... 7. 7. 7. 7 7.7 7.7 7.7 ),7 cyle (bitslice ). [7] (NIST P-) 7 cycle (Athlon) [] / iteration function iteration function 7/( + ) = 77 cycle/iteration N 77 (N/) cycle/iteration. [] (ECC-, NIST-) 7

7 ( ) Athlon.GHz 7.. ( ) ( ) FLOPS 7.7.. 7. ( ) 7cycle/iteration (Cell SPE GHz, Bitslice ) N 7 (N/) cycle/iteration Koblitz Koblitz. (+. ( ) +. (L [Gallant []])). 7 (N/) cycle/iteration. FLOPS % iteration ADD Koblitz Gallant [] Negation Map 77cycle/iteration bit 7cycle/iteration bit Koblitz. (FLOPS) ( Y = ) = / = π N / 77 (N/) /Y = π N / 7 (N/) /Y Koblitz = π N /N/. 7 (N/) /Y CRYPTREC Report. RSA

( FLOPS ) 7.7.. 7. ( FLOPS) ( ). 7....7. 7.... 7.7. CRYPTREC Report. Athlon.GHz GB 7 CRYPTREC Report Athlon.GHz ( ) ( ).GFLOPS (=. FLOPS) FLOPS L N (/, (/) / + C) L N (s, c) = exp(c(log(n) s log(log(n)) s ), (/) / =. C =., log =. RSA NIST SP-7 RSA

7 7 7 7 7 7 RSA RSA RSA FLOPS RSA AES (7 cycle/block []) 7 RSA7 ( ) ( ) RSA RSA 7 NIST SP-7

RSA RSA RSA7 RSA 数 トッビ円楕 素体 ( 上限 ) 素体 ( 下限 ) 冪 ( 上限 ) 冪 ( 下限 ) RSA7 RSA RSA RSA 解読計算量 ( の冪 ) RSA RSA ( ) RSA Koblitz 7 7 7 7 77 7 7 7 7 7 [] A. Odlyzko, The Future of Integer Factorization, CryptoBytes, vol., no., pp.-,. ftp://ftp.rsasecurity.com/pub/cryptobytes/crypton.pdf [] Certicom, Certicom ECC Challenge, 7 (revised November ). http://www.certicom. com/pdfs/cert ecc challenge.pdf

[] ANSI, The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X.-,. [] R. Gallant, R. Lambert, and S. Vanstone, Improving the Parallelized Pollard Lambda Search on Anomalous Binary Curves, Mathematics of Computation, vol., no., pp.- 7,. http://www.ams.org/journals/mcom/--/s-7---/ S-7---.pdf [] M. Brown, D. Hankerson, J. Lopez, and A. Menezes, Software Implementation of the NIST Elliptic Curves over Prime Fields, technical report, CORR -, University of Waterloo,. http://www.cacr.math.uwaterloo.ca/techreports//corr-.ps. [] A. Lenstra and E. Verheul, Selecting Cryptographic Key Sizes, Journal of Cryptology, vol., no., pp.-,. [7] RSA Labs., A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths, RSA Labs Bulletin, no., April (Revised November ). http://www.rsa.com/rsalabs/ node.asp?id= [] NESSIE, NESSIE Security Report, February,. http://www.cosic.esat.kuleuven. be/nessie/deliverables/d-v.pdf [] H. Orman and P. Hoffman, Determining Strengths for Public Keys Used for Exchanging Symmetric Keys, IETF RFC 7/BCP, April. http://www.apps.ietf.org/rfc/rfc7. html [] D. Bernstein, Cuvre: New Diffie-Hellman Speed Records, Proceedings of PKC, LNCS, pp.7-, Springer-Verlag,. [] CRYPTREC, CRYPTREC Report,, March 7. [] T. Gueneysu, C. Paar, and J. Pelzl, Attacking Elliptic Curve Cryptosystems with Special Purpose Hardware, Proceesings of ACM SIGDA 7, 7. [] NIST, Recommendation for Key Management-part: General (Revised), SP-7, August 7. [] M. Matsui and J. Nakajima, On the Power of Bitslice Implementation on Intel Core Processor, Proceedings of CHES 7, LNCS 77, pp.-, Springer-Verlag, 7. [] ECRYPT II, ECRYPT Yearly Report on Algorithms and Keysizes (-), July. http://www.ecrypt.eu.org/documents/d.spa.7.pdf [] D. Bailey, B. Baldwin, L. Batina, D. Bernstein, P. Birkner, J. Bos, G. van Damme, G. de Meulenaer, J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange, N. Mentens, C. Paar, F. Regazzoni, P. Schwabe, and L. Uhsadel, The Certicom Challenges ECC-X, IACR eprint Archive, /,. http://eprint.iacr.org// [7] D. Bernstein, Speed Reports for Elliptic-Curve Cryptography,. http://cr.yp.to/ ecdh/reports.html [],,,,, (SCIS ),. [],,,,, (SCIS ),. [],,,, RSA, (SCIS ),. [] TOP Supercomputing Sites,. http://www.top.org/ ( / ) ( / ) ( / ) ( / )

security white paper@ml.fujitsu.com