Size: px
Start display at page:

Download "1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.."

Transcription

1 ( )

2 (1) (2) (3) (ECDLP) Baby-step Giant-step ρ (ECC) ECDH ECElGamal ECDSA

3 1., ( ). 2

4 1.1 p, 0 p 1 F p = {0, 1,..., p 1}. p 0 p 1, p,. 1.1 F 7 = {0, 1, 2, 3, 4, 5, 6} x + y 1.1. F p x x + p p, F p x x + p. x y = x + p y, F p. 1.2 F 7 = {0, 1, 2, 3, 4, 5, 6} x y 1.2. (additive group). 3

5 1.1 y x F y x F G (i) G a, b, c (a b) c = a (b c), (ii) G a a e = e a = a G e, (iii) G a a a = a a = e G a,, G (group). +. ( x y = y x ), ( x + y = y + x ). 4

6 F p p,. 1.3 F 7 = {0, 1, 2, 3, 4, 5, 6} x y 1.3. F p p, x, x + p, x + 2p, x + 3p,.... x y = (x + p) y = (x + 2p) y =,. (, p, x, a, b ap + by = 1, by 1 (mod p) b y 1 (mod p), x y = x b. a, b Euclid.) 1.4 F 7 = {0, 1, 2, 3, 4, 5, 6} x y (y 0) 1.4., ( 0 ) p F p (prime field).,, ( 0 ), (finite field).,.. 5

7 1.3 y x F y x F field, field ( )., köper (, ).,, field. 6

8 1.2 F p. 1.5 ( ) E : y 2 = x 3 + ax + b (a, b F p, E = 4a b 2 0) (1.1) F p (elliptic curve). 1.6 E : y 2 = x 3 + 3x + 4 F 7. E, x, y F p (x, y) F p - (F p -rational point). (the point at infinity) O. (x, y). 1.7 F 7 E : y 2 = x 3 + 3x y 2 = x 3 + 3x + 4 F 7 - P 0 O P 1 (0, 2) P 9 (0, ) P 2 (1, 1) P 8 (1, ) P 3 (2, 2) P 7 (2, ) P 4 (5, 2) P 6 (5, ) P 5 7

9 E = 4a b 2 0, (1.1). E (discriminant). 2 F : y = x 2 + Bx + C F = B 2 4C, F 0 F. n G : y = A 0 x n + A 1 x n A n G = A 2(n 1) 0 (α 1 α 2 ) 2 (α 1 α n ) 2 (α 2 α 3 ) 2... (α 2 α n ) 2 (α n 1 α n ) 2. α 1,..., α n G., n = 3, E = 4a b 2. 8

10 1.3,. ( x, y )., ( ). 1.8 ( ) R = P + Q. F p E : y 2 = x 3 + ax + b 2 P, Q ( O) 1. 2 P, Q (P = Q P ) l. 2. E l 3 R ( R = O ). 3. R x R (R = O R = O ). R R, R = R. O, F 7 E : y 2 = x 3 + 3x + 4, 1.6 y 2 = x 3 + 3x + 4 F 7 - P 0 O P 1 (0, 2) P 6 (5, 5) P 2 (1, 1) P 7 (2, 5) P 3 (2, 2) P 8 (1, 6) P 4 (5, 2) P 9 (0, 5) P 5 (6, 0) 9

11 (elliptic curve) (ellipse).,.,., ( ).. 10

12 ( ) R = P + Q. F p E : y 2 = x 3 + ax + b 2 P, Q P = O : R = Q. Q = O : R = P. : P = (x P, y P ), Q = (x Q, y Q ) y P = y Q : R = O ( Q = P ). y P y Q : R = (x R, y R ). x R, y R x R = λ 2 x P x Q, y R = λ(x P x R ) y P, λ 2 P, Q ( P ). y P y Q x λ = P x Q 3x 2 P + a 2y P x P x Q x P = x Q F 7 E : y 2 = x 3 + 3x + 4, P 2 + P 4, 2 P 6. 11

13 2 P = (x P, y P ), Q = (x Q, y Q ) (y P y Q )/(x P x Q ). x P = x Q 0,. P, Q E : y 2 = x 3 + ax + b y P y Q = (y P y Q )(y P + y Q ) x P x Q (x P x Q )(y P + y Q ) = yp 2 yq 2 (x P x Q )(y P + y Q ) = (x3 P + ax P + b) (x 3 Q + ax Q + b) (x P x Q )(y P + y Q ) = (x P x Q )(x 2 P + x P x Q + x 2 Q + a) (x P x Q )(y P + y Q ) = x2 P + x P x Q + x 2 Q + a y P + y Q, P = Q x P = x Q, y P = y Q. y P y Q = x2 P + x P x Q + x 2 Q + a = 3x2 P + a x P x Q y P + y Q 2y P 12

14 y 2 = x 3 + 3x + 4 F y 2 = x 3 + 3x + 4 F 7 - P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 0 P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 P 1 P 8 P 9 P 6 P 7 P 4 P 5 P 3 P 2 P 0 P 2 P 2 P 9 P 1 P 4 P 6 P 3 P 7 P 5 P 0 P 8 P 3 P 3 P 6 P 4 P 1 P 9 P 2 P 8 P 0 P 5 P 7 P 4 P 4 P 7 P 6 P 9 P 8 P 1 P 0 P 2 P 3 P 5 P 5 P 5 P 4 P 3 P 2 P 1 P 0 P 9 P 8 P 7 P 6 P 6 P 6 P 5 P 7 P 8 P 0 P 9 P 2 P 1 P 4 P 3 P 7 P 7 P 3 P 5 P 0 P 2 P 8 P 1 P 9 P 6 P 4 P 8 P 8 P 2 P 0 P 5 P 3 P 7 P 4 P 6 P 9 P 1 P 9 P 9 P 0 P 8 P 7 P 5 P 6 P 3 P 4 P 1 P ,

15 , y 2 = x 3 + ax + b ( 1.4), y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (Weierstrass ). y 2 = x 3 + ax + b. 14

16 1.4,. Mordell-Weil (Mordell-Weil group). (group order) F 7 E : y 2 = x 3 + 3x + 4 #E. F p, (Hasse-Weil ) F p E #E, #E. p p #E p p Hasse-Weil ( 1.14), F p p., F ,, F 7 E : y 2 = x 3 + 3x + 4 Hasse-Weil ( 1.14). 15

17 1.8 F 7 E : y 2 = x 3 + ax + b b a Deuring Hasse-Weil ( 1.14),., Deuring. Deuring, a, b, Hasse-Weil. F 7 ( 1.8). 16

18 1.5 F p E P ( (base point) ). d, P d d P = P + + P } {{ } d (scalar multiplication)., F 7 E : y 2 = x 3 + 3x + 4, P 1. 2 P 1 = 3 P 1 = 4 P 1 = 5 P 1 = 6 P 1 = 7 P 1 =, 2, 3,..., O. (point order)., P d P = O.,, F 7 E : y 2 = x 3 + 3x + 4, P 1 17

19 x d x d, ( mod N ) RSA., d P,,. 18

20 d P, d 1., 8 P = P + P + P + P + P + P + P + P 7., 8 P = 2 (2 (2 P )), 3.,. d 2 d = 2 n 1 + d n 2 2 n d d 0 (d i {0, 1}) = (1, d n 2,..., d 1, d 0 ) : P, d = (1, d n 2,..., d 1, d 0 ) 2 : d P 1. Q P 2. i = n 2,..., 1, 0 : 2.1 Q 2 Q 2.2 d i = 1 Q Q + P 3. Q., d P ( ) 1.5 log 2 d, d , d = 3045 = (1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1) 2, Q.,. i d i

21 F q E Mordell-Weil E(F q ), E(F q ) 2 C 1, C 2, E(F q ) C 1 C 2 (#C 1 #C 2, #C 1 (q 1))., E(F q ) ( E(F q ) C 1 ). 20

22 1.6 (1),.,. F p,, ( ). ( 1.10),., (projective coordinates)., 3 (X : Y : Z)., 2 (X : Y : Z), (X : Y : Z ) X = cx, Y = cy, Z = cz c F p, 2. (X : Y : Z) = (2X : 2Y : 2Z) = = (X/Z : Y/Z : 1)., ( ) (x, y), (x : y : 1)., (X : Y : Z) (X/Z, Y/Z). 21

23 Jacobian, 2 X = c 2 X, Y = c 3 Y, Z = cz Jacobian (Jacobian projective coordinate).,. 22

24 Y 2 Z = X 3 + axz 2 + bz 3 (a, b F p, E = 4a b 2 0)., y 2 = x 3 +ax+b x = X/Z, y = Y/Z., X Z 0.,.,, ( ) F p E : Y 2 Z = X 3 + axz 2 + bz 3 2 P = (X P : Y P : Z P ), Q = (X Q : Y Q : Z Q ) R = P + Q = (X R : Y R : Z R ). P Q X R = va Y R = u(v 2 X P Z Q A) v 3 Y P Z Q Z R = v 3 Z P Z Q u = Y Q Z P Y P Z Q, v = X Q Z P X P Z Q, A = u 2 Z P Z Q v 3 2v 2 X P Z Q P = Q X R = 2hs Y R = w(4b h) 8YP 2 s 2 Z R = 8s 3 w = az 2 P + 3X2 P, s = Y P Z P, B = sx P Y P, h = w 2 8B P Q : P Q :, P = (x : y : 1) d P = (X : Y : Z), (X/Z, Y/Z)., 1,. 23

25 ,, Jacobian,. P Q P = Q 3, 1 4, Jacobian , d d i, P = Q, P Q 1/2, P = Q Jacobian. 24

26 1.7 (2) 1.1 d 2., d m. m = 8 ( n 3 ). 1.2 (8 ) : P, d = (d n 1, d n 2,..., d 1, d 0 ) 2 : d P 0. i = 0, 1,..., 7 : 0.1 P i i P 1. Q P 4dn 1 +2d n 2 +d n 3 2. i = n 4, n 7,..., 2 : 2.1 Q 8 Q 2.2 Q Q + P 4di +2 i 1 +d i 2 3. Q. 1.2, 0. P 0, P 1,..., P 7, , 3. (window method). 1.21, d = 3045 = (1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1) 2, Q.,. i d i d i 1 d i , /3, 8 P 3, 2.1 n., 2.2 1/3, 2.2 n/ /2, 2.2 n/2, ,. 25

27 d 160, m =

28 1.8 (3) 2, P P ( (x, y), (X : Y : Z))., d 2 d = 2 n 1 + d n 2 2 n d d 0 (d i { 1, 0, 1}) = (1, d n 2,..., d 1, d 0 ) 2,. 1.3 ( 2 ) : P, d = (d n 1, d n 2,..., d 1, d 0 ) 2 : d P 1. Q P 2. i = n 2,..., 1, 0 : 2.1 Q 2 Q 2.2 d i = 1 Q Q + P 2.3 d i = 1 Q Q P 3. Q. d 2, NAF (non-adjacent form, ). d, 3d ( ) 2 (e n+1, e n,..., e 0 ) 2 d ( ) 2 (f n+1, f n,..., f 0 ) 2. d = (3d d)/2, 3d 2 d 2 2, d 2 ( d i = e i+1 f i+1 ). NAF,, 1 1, d ±1 log 2 d/ NAF, 1.33 log 2 n. 27

29 2 2, d i = 1,. 28

30 p,., y 2 = x 3 + ax + b.,.,. [ ],.,,.,,., (d P d ),.,.,,,. 29

31 2,. 30

32 2.1 (ECDLP) F p E, P d Q = d P ( )., P, Q Q = d P d (1 d l, l P ) (elliptic curve discrete logarithm problem, ECDLP) F 7 E : y 2 = x 3 + 3x + 4, P = P 1, Q = P 2, Q = d P d. 2.1,.,.,. 2.2 F p, P, Q F p Q = d P d.. 31

33 P, Q = P d, P, Q d ( ), log P Q. y = log P Q. Q = d P d ( ).,. 32

34 2.2 2 P, Q Q = d P d (1 d l, l P ) ( ), 2 P, 3 P,..., l P (brute force method) GHz, ,

35 2 160,, ( = ).,,. Mathematica Maple,,. Risa/Asir,. 34

36 2.3 Baby-step Giant-step, Baby-step Giant-step (Baby-step Giant-step method). Q = d P, P l m = l ( x x ). d = sm + t (0 s, t < m), s, t d. s, t. R = m P, Q = d P = (sm + t) P = s (m P ) + t P = s R + t P, s, t Q t P = s R (2.1). 2 Q, Q P, Q 2 P, Q 3 P,..., Q (m 1) P O, R, 2 R, 3 R,..., (m 1) R, x. 2, s, t, d. m, 2m, 2 l. 2.4 Baby-step Giant-step, l , 2 81, , Baby-step Giant-step,. 35

37 , 2., , ,

38 2.4 ρ, ρ (ρ method), Baby-step Giant-step. Q = d P, s P + t Q = s P + t Q s, t, s, t (s s, t t ). (t t ) Q = (s s) P Q = s s t t P, (s s)/(t t ) d. mod l (l P ). 2.5 F 229 E : y 2 = x 3 + x + 44, P = (5, 116), Q = (155, 166) Q = d P. P l = 239., 26 P Q = 47 P Q = (9, 18) Q = P = P = 176 P d = 176. R i = s i P + t i Q, ρ, R i = R j R i, R j.. 37

39 ( ) 2,.., (365 ) 23 1/2 2..,. ρ,. 38

40 ρ,,. R, (Random Walk ) f. R + M 0 if x(r) 0 (mod 4) R + M 1 if x(r) 1 (mod 4) f(r) = R + M 2 if x(r) 2 (mod 4) R + M 3 if x(r) 3 (mod 4) x(r) R x. M i = u i P + v i Q , R 0 = (39, 159) = 54 P Q f,. R 9 R 21. M 0 = (135, 117) = 79 P Q M 2 = (84, 62) = 87 P Q M 1 = (96, 97) = 206 P + 19 Q M 3 = (72, 134) = 219 P + 68 Q. i R i s i t i x(r i ) mod 4 i R i s i t i x(r i ) mod 4 0 (39, 159) (197, 92) (160, 9) (211, 47) (130, 182) (194, 145) (27, 17) (0, 68) (36, 97) (223, 153) (119, 180) (9, 18) (108, 89) (167, 57) (81, 168) (75, 136) (223, 153) (57, 105) (9, 18) (159, 4) (167, 57) (185, 227) (75, 136) (158, 26) (57, 105) (197, 92) (159, 4) (211, 47) (185, 227) (194, 145) (158, 26) (0, 68)

41 Random walk f,, 4.. ρ,

42 , l., R i (distinguished point). x θ., 1/θ.,. R i = R j f(r i ) = f(r j ), f(f(r i )) = f(f(r j )), f(f(f(r i ))) = f(f(f(r j ))),...,, , x 1 0 ( θ = 10), R 1 = (160, 9), R 2 = (130, 182), R 19 = (0, 68), R 31 = (0, 68). R 19 R 31, R 19 = 227 P Q = 9 P + 37 Q = R 31 d = 176. ρ, l, Baby-step Giant-step. l/θ, Baby-step Giant-step., ρ,.,,. 41

43 Certicom Certicom Waterloo Scott Vanstone 1985, (, Waterloo RIM ). Certicom,. 42

44 2.5., ρ. (Certicom Challenge.) Certicom Challenge Certicom Challenge Certicom Challenge Certicom Challenge p = ( )/( ) a = b = #E = x P = y P = l = x Q = y Q = d = Q x (π 3) 10 34,. 112, PlayStation ,

45 Certicom Challenge Certicom,,., ,000,,,. 44

46 2.6, ρ., Menezes-Okamoto-Vanstone Waterloo Alfred Menezes, Scott Vanstone NTT Tatsuaki Okamoto, F p p + 1 (Supersingular ), F 7, Supersingular., ( ) Supersingluar Semaev-Smart-Satoh-Araki Igor Semaev, Bristol Nigel Smart, Takakazu Satoh Kiyomichi Araki, F p p (Anomalous ), F 7, Anomalous. 45

47 Menezes-Okamoto-Vanstone,,,. (pairing)., 2 e : E(F q ) E(F q ) G, P, P, Q, Q, e(p + P, Q) = e(p, Q) e(p, Q), e(p, Q + Q ) = e(p, Q) e(p, Q )., (bilinear map).,,, ID. 46

48 , P, Q Q = d P d.,, Baby-step Giant-step, ρ. ρ. [ ],,.,,.,. 47

49 3,.. 48

50 3.1 (ECC),. (elliptic curve cryptosystems, ECC) ( ).,. RSA, RSA RSA, ( d) 160., F p, E : y 2 = x 3 + ax + b. P = (x P, y P ), l.. p = = a = 3 = b = #E = x P = y P = l =

51 3.1 Diffie-Hellman (ECDH) Menezes-Qu-Vanstone (ECMQV) ElGamal (ECElGamal) DSA (ECDSA), (encryption), (cryptsystem) 2.,. (cryptsystem ),. 50

52 3.2 ECDH, ( ).,, Diffie-Hellman (ECDH ). 3.2 (ECDH ) Alice Bob, F p E P. Alice Bob, 2 K A = K B. 1. Alice d A, P A = d A P Bob. 2. Bob d B, P B = d B P Alice. 3. P B Alice K A = d A P B,. 4. P A Bob K B = d B P A, F 7 E : y 2 = x 3 + 3x + 4 P = P 1, d A = 2, d B = 3. P A = K B = P B = K A = 3.4 ECDH, Alice K A Bob K B. ECDH. Carol, Alice Bob ECDH, F p, E, P. Alice Bob P A, P B. P A, P d A, P B, P d B, Carol d A, d B. ECDH. 51

53 Diffie-Hellman (ECDH ) P A = d A P, P B = d B P, P A, P B, P K = d A d B P Diffie-Hellman (ECDH ). ECDH., P A, P d A, K = d A P B, ECDH. ECDH, d A, d B K,. ECDH,, ECDH. 52

54 3.3 ECElGamal ECDH, ECElGamal. 3.5 (ECElGamal ) Alice Bob, F p E P. Alice Bob, Bob M. 1. Bob d B, P B = d B P. P B, d B. 2. Alice a r, P A = r P. b Bob P B, K = r P B. c M, C = M + K. d Bob C P A. 3. Bob a P A d B, K = d B P A. b M = C K, M. 3.6 ECElGamal, Alice K Bob K.. 53

55 , 1985 IBM Victor Miller Washington Neal Koblitz.,. 54

56 3.4 ECDSA, ECDSA. 3.7 (ECDSA ) Alice Bob, F p E P l. Alice Bob, Bob m. 1. Alice d A (1 d A l), P A = d A P. P A, d A. 2. Alice a r, U = r P = (x U, y U ). b m H(m). c u = x U mod l, v = (H(m) + u d A )/r mod l. d Bob (u, v). 3. Bob a Alice P A, d = 1/v mod l V = d H(m) P + d u P A = (x V, y V ). b u = x V mod l.,,. 3.8 ECDSA,. 55

57 DTCP,., DTCP (Digital Transmission Content Protection),. DTCP, ECDH, ECDSA. 56

58 3.5,,. 2, Baby-step Giant-step, ρ l. l,.,. 3.9 ( ) P. F p E 1. p, p. 2. a, b F p, E(a, b) : y 2 = x 3 + ax + b. (Hasse-Weil, p p #E(a, b) p p ). 3. #E(a, b) #E(a, b) = p 2. (Anomalous ). 5. E(a, b) P Supersingular ,.. 57

59 NIST,,,. NIST. 58

60 (ECC), ( ). [ ],,.,., ANSI ( ), IEEE ( ), ISO ( ), NIST ( ), CRYPTREC ( ).,. 59

61 ,.,., ( ). 2,., ( ),, , ( ),, ,. 3,. 3,,.,,, Joseph Silverman, A Friendly Introduction to Number Theory (3rd edition), Pearson Prentice Hall, 2006 [, ( 3 ),, 2007 ] Victor Shoup, A Computational Introduction to Number Theory and Algebra (1st edition) [ PDF : Jeffrey Hoffstein, Jill Pipher, Joseph Silverman, An Introduction to Mathematical Cryptography, Springer-Verlag,

62 ,,. 3,.,,, ,, BP, ( ),,, , 2 (, ).,,, ,,,, ,. 4,. Neal Koblitz, A Course in Number Theory and Cryptography (2nd edition), Springer-Verlag, 1994 [, ( 2 ),, ] Ian Blake, Gadiel Seroussi, Nigel Smart, Elliptic Curves in Cryptography, Cambridge University Press, 2000 [,,, 2001 ] Darrel Hankerson, Alfred Menezes, Scott Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2002, (, ),,, , ( : ID ). ID. Luther Martin, Introduction to Identity-Based Encryption, Artech House,

63 ,,.,,. (ISEC) [2 1 ] (JANT) [3 1 ], ISEC, 300. (SCIS) [ 1 ], (IACR) CRYPTO EUROCRYPTO ASIACRYPTO PKC,. Workshop on Elliptic Curve Cryptography (ECC) 62

楕円曲線暗号と RSA 暗号の安全性比較

楕円曲線暗号と RSA 暗号の安全性比較 RSA, RSA RSA 7 NIST SP-7 Neal Koblitz Victor Miller ECDLP (Elliptic Curve Discrete Logarithm Problem) RSA Blu-ray AACS (Advanced Access Control System) DTCP (Digital Transmission Content Protection) RSA

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O An Internet Vote Using the Elliptic Curve Cryptosystem TAKABAYASHI Shigeki Nowadays various changes are taking place in the society by the spread of the Internet, and we will vote by the Internet using

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,.

2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,. 2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,. http://www2.math.kyushu-u.ac.jp/~s-yokoyama/yamagata2014.html. K Q, C, F p.,, f = 0.,,.,

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Group Name Implemation Group /Project No. 13-C /Project Leader 1009087 Takahiro Okubo /Group Leader 1009087

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

http://www.ipa.go.jp/security/ Contents 1. NIST 2010 2. NISC 3. CRYPTREC 2008 10 28 Copyrignt 2008, IPA all right reserved. 2 1977 MAC) PKI PKI PKI: (Public Key Infrastructure) 2008 10 28 Copyrignt 2008,

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

untitled

untitled 18 18 8 17 18 8 19 3. II 3-8 18 9:00~10:30? 3 30 3 a b a x n nx n-1 x n n+1 x / n+1 log log = logos + arithmos n+1 x / n+1 incompleteness theorem log b = = rosário Euclid Maya-glyph quipe 9 number digits

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

( )

( ) NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

ISO/IEC 9798プロトコルの安全性評価

ISO/IEC 9798プロトコルの安全性評価 ISO/IEC 9798 2011 2 4 ISO/IEC 9798-2 (Mechanisms using symmetric encipherment algorithms), ISO/IEC 9798-3 (Mechanisms using digital signature techniques), ISO/IEC 9798-4 (Mechanisms using a cryptographic

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

2

2 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 01 02 03 4 04 05 06 5 07 08 09 6 10 11 12 7 13 14 15 8 16 17 18 9 19 20 21 10 22 23 24 11 FIELD MAP 12 13 http://www.pref.ishikawa.jp/shinrin/zei/index.html

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen 6 2000 Journal of the Institute of Science and Engineering5 Chuo University Jacobi CM Type Computation of CM Type of Jacobian Varieties Jacobi CM CM Jacobi CM type reflex CM type Frobenius endomorphism

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 2006 D r. H e n e r 18 4 1 .,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 1 2 1 1.1 2 10..................................... 1 1.2 2......................................

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð Python March 30, 2016 1 / 30 who? @elliptic shiho 0x10, CTF March 30, 2016 2 / 30 why? Python sage 1,, 1 NumPy, Cython Python March 30, 2016 3 / 30 why?,. -, -,, March 30, 2016 4 / 30 , E : y 2 = x 3 +

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

RSA署名方式の安全性を巡る研究動向について

RSA署名方式の安全性を巡る研究動向について RSA RSA RSA RSA RSA RSA PSSRSA PSS RSARSA PSS RSA PSS RSARSA-PSS E-mail:mayumi.saitou@boj.or.jp RSARSA PKCS ISO ISO IPS ANS X RSARSA RSA RSA RSA RSA RSA RSA bit RSA RSA PSS RSA PSS RSA ISO PKCSVer RSA

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

1 TEPLA TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) C 2 1 TEPLA TEPLA Barreto-Naehrig (BN) BN Opimal Ate TEPLA M

1 TEPLA TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) C 2 1 TEPLA TEPLA Barreto-Naehrig (BN) BN Opimal Ate TEPLA M TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) 27 12 20 ver. 2.0.0 1 1 TEPLA TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) C 2 1 TEPLA TEPLA 254 2 12 Barreto-Naehrig

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding Theory) (safely) (ryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding

More information

( ) >

( ) > (Ryūta Hashimoto) α α p q < p/q α q Lagrange 0 0. 3.4.4.96.5.5.5.4 <

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name RSA Group Name RSA Code Elliptic Curve Cryptograrhy Group /Project No. 13-B /Project Leader 1009087 Takahiro

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

ASF-01

ASF-01 暗号モジュール試験及び認証制度 (JCMVP) 承認されたセキュリティ機能に関する仕様 平成 26 年 4 月 1 日独立行政法人情報処理推進機構 ASF-01 A p p r o v e d S e c u r i t y F u n c t i o n s 目次 1. 目的... 1 2. 承認されたセキュリティ機能... 1 公開鍵... 1 共通鍵... 3 ハッシュ... 4 メッセージ認証...

More information

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2 /, 2001 1 GDP................................... 2 2.......................... 2 3.................................... 4 4........................................ 5 5.....................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

i 1 1 1.1.......................................... 1 1.1.1......................................... 1 1.1.2...................................... 1 1.1.3....................................... 2 1.1.4......................................

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

28 SAS-X Proposal of Multi Device Authenticable Password Management System using SAS-X 1195074 2017 2 3 SAS-X Web ID/ ID/ Web SAS-2 SAS-X i Abstract Proposal of Multi Device Authenticable Password Management

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

第122号.indd

第122号.indd -1- -2- -3- 0852-36-5150 0852-36-5163-4- -5- -6- -7- 1st 1-1 1-2 1-3 1-4 1-5 -8- 2nd M2 E2 D2 J2 C2-9- 3rd M3 E3 D3 J3 C3-10- 4th M4 E4 D4 J4 C4-11- -12- M5 E5 J5 D5 C5 5th -13- -14- NEWS NEWS -15- NEWS

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973 ( ) ( C) 1 probability probability probable probable probable probable probably probably maybe perhaps possibly likely possibly

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

ISO/TC68における金融分野向け推奨暗号アルゴリズムの検討状況

ISO/TC68における金融分野向け推奨暗号アルゴリズムの検討状況 ISO/TC68 2-key DES 1,024 RSA SHA-1 NIST ISO/TC68 2-key DES ISO/TC68 ISO/TC68 DES ISO/TC68 SHA-1 RSA E-mail: yuuko.tamura@boj.or.jp / /2009.3 173 1. IC PIN FISCFISC [2006] 1 2-key DES 1,024 RSA 1,024 RSA

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information