橡試験直前配布.PDF

Similar documents

B

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2

TOP URL 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

tnbp59-21_Web:P2/ky132379509610002944

LLG-R8.Nisus.pdf

( ) ( ) 1729 (, 2016:17) = = (1) 1 1


研修コーナー

G

パーキンソン病治療ガイドライン2002

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

£Ã¥×¥í¥°¥é¥ß¥ó¥°(2018) - Âè11²ó – ½ÉÂꣲ¤Î²òÀ⡤±é½¬£² –

2004

Microsoft Word - 11問題表紙(選択).docx

2 #2 i p i (ɛ)., q D q lim n(ɛ) log i ɛ log(ɛ) lim ɛ log n(ɛ) log(ɛ) (238), ɛ ( 69 ), ɛ, n(ɛ) n(ɛ) ɛ Dq (239), D q (, )., q, q 2. 69: ɛ. 7.2 q (237),

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

double float

6„”“ƒ„û−G33

PDF

Note.tex 2008/09/19( )


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


本文/目次(裏白)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

橡07第1章1_H160203_.PDF

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

プログラム


Program


Œ{ٶ/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

aphp37-11_プロ1/ky869543540410005590

日本内科学会雑誌第96巻第11号

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1


Part () () Γ Part ,

nsg04-28/ky208684356100043077

³ÎΨÏÀ

Gmech08.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

.V...z.\

201604_建築総合_2_架橋ポリ-ポリブテン_cs6.indd

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

Kullback-Leibler


TOP URL 1


TOP


Microsoft PowerPoint - H22コロキウム [互換モード]

Transcription:

d d/ /

P 0 d P 0 +d P 0 +d d P 0 +d=p 0 -d/ d/

P 0 P 0 +d=p 0 -d/ d/ Tayler d P 0 +dp 0 /dd dp 0 /dd= -P 0 d/ d/ /P 0 dp 0 /d= -/ / /P 0 dp 0 = -/ / d logp 0 =-/ /+cons. P 0 =e -/ / =0 0 0

+d f d d f d=p 0 d/ d/=e -/ / / d f =e -/ / / [ ] / / λ λ e / λd = e 0 = 0 = 0 λ / e d λ = λ 0

= y=e - =/ y=e -/ / y=e / / = y=e - = =/ y=e -/ y=e / / / =

[ ] λ λ λ λ λ / / 0 / 0 / / e e e d e = = = = = =/ / y y y e y log log / log / λ λ λ λ = = = = /λ e y =

y = e /λ

y = e /λ y = e / λ log y = / λ = λlog y = λlog y

F X U0 U< X=F - U 0

rnd 0 double ep_rndin { reurn *log/rnd;} a b ep_rnda ep_rndb

. 0 ep_rnda. ep_rndb 3. 3. 3a ep_rnda. 3b.

queue.c #include <sdio.h> #include <mah.h> 3 #include <sdlib.h> 4 #define NofClerk 3 5 enum even_ype {arivalfinish}; 6 sruc even_node { 7 long ime; 8 enum even_ype ype; 9 in clerk_id; 0 sruc even_node *ne; }; long mean_arival_inerval; 3 long mean_operaion_inerval; 4 long qui_ime; 5 in clerk_busy[nofclerk]; 6 in nof_person_in_queue; 7 long curren_ime; 8 sruc even_node *even_roo; 9 void even_addlong inervalenum even_ype ypein clerk_id; 0 long ep_rndlong mean_inerval; BSD

queue.c main in mainin argcchar **argv{ in i; 3 sruc even_node *rm_even; 4 ifargc!=4{ 5 prinf"usage: queue arival_inerval operaion_inerval qui_ime n"; 6 reurn ; 7 } 8 sscanfargv[]"%d"&mean_arival_inerval; 9 sscanfargv[]"%d"&mean_operaion_inerval; 30 sscanfargv[3]"%d"&qui_ime; 3 fori=0;i<nofclerk;i++ clerk_busy[i]=0; 3 nof_person_in_queue=; 33 curren_ime=0; 34 even_roo=null; 35 even_addep_rndmean_arival_inervalarival0;. 66 }

36 for;;{ 37 ifcurren_ime>qui_imereurn 0; 44 for;;{ 45 if!nof_person_in_queue break; 46 fori=0;i<nofclerk;i++{ 47 if!clerk_busy[i] break; 48 } 49 ifi==nofclerk break; 50 clerk_busy[i]++; 5 nof_person_in_queue--; 5 even_addep_rndmean_operaion_inervalfinishi; 53 } 54 rm_even=even_roo; 55 even_roo=rm_even->ne; 56 curren_ime=rm_even->ime; 57 ifrm_even->ype==arival{ 58 nof_person_in_queue++; 59 even_addep_rndmean_arival_inervalarival0; 60 } 6 else ifrm_even->ype==finish 6 clerk_busy[rm_even->clerk_id]=0; 63 else ; 64 freerm_even; 65 } queue.c main 38 /*++++++++++++++++++++++++++++*/ 39 prinf"ime=%3d nof_p=%3d" curren_imenof_person_in_queue; 40 fori=0;i<nofclerk;i++ 4 prinf" busy[%d]=%d"iclerk_busy[i]; 4 prinf" n"; 43 /*++++++++++++++++++++++++++++*/

67 void even_addlong inervalenum even_ype ypein clerk_id{ 68 sruc even_node *new_even; 69 sruc even_node *even; 70 new_even=sruc even_node *mallocsizeofsruc even_node; 7 new_even->ime=curren_ime+inerval; 7 new_even->ype=ype; 73 new_even->clerk_id=clerk_id; 74 ifeven_roo==null{ 75 new_even->ne=null; 76 even_roo=new_even; 77 reurn; 78 } 79 ifeven_roo->ime>new_even->ime{ 80 new_even->ne=even_roo; 8 even_roo=new_even; 8 reurn; 83 } 84 foreven=even_roo;;even=even->ne{ 85 ifeven->ne==null{ 86 new_even->ne=null; 87 even->ne=new_even; 88 reurn; 89 } 90 ifeven->ne->ime>new_even->ime{ 9 new_even->ne=even->ne; 9 even->ne=new_even; 93 reurn; 94 } 95 } 96 } queue.c even_add

queue.c ep_rnd 97 long ep_rndlong mean_inerval{ 98 double r; 99 r=doublemean_inerval*logdoublerand_max/doublerandom; 00 reurn longr; 0 } random0 RAND_MAX

v e v e3 e e5 e4 e6 e7 v3 e8 v4

G= =V E V V V V V v e v e3 V ={v v 3 } V ={v v 4 } e v3 e5 e4 e8 e6 v4 e7 E ={e e 4 e 5 e 8 } CE =V V

G =V E G =V E E E G G G G G G

G= =VE G G

A B readera wrier readerb

sae machine

marked graph

NG OK OK NG

free choice ne

fork join selec

simple Peri ne

Peri Peri

TOP Daa Flow Diagram

DFD

DFD

TOP MiniSpec

Mealey 500 500 0 500 500 500 000 500 500 000 000

A B C D A=BCD E=F+G+H J=K* E F o G o H o J K*

* o o

decision ree 5g 90 50g60 5g0 50g90 5g30 50g30

decision able decision able 3

3 4 3 4 3 4 3

BDD 3 90 no yes 5g no yes no no yes yes

GFq q m p p { 0 L p } p mod p

i + F F F GF p GF p m GF p m

m F GF m p F α m GF p α m 0 p α = α α L α m p α p m = m GF p

α m F F α = 0 α m Gα m α m = Gα m m GF p i α α m i m α = a0 + aα + L + am α a 0 a m a L 0 a m a a L m GF p

GF + 0 -- 0 / 0 0 0 0 0 0 0 0 --- 0 0 GF m α + α = + α = 0 α = α 4 + + 4

b b F = f 0 + f + L + fb + b α GF b α α

a0 a L a b GF b a = a 0 + aα + L + a b α b α α

3 3 b a b a a a α α α α 0 + + + = L b α 0 0 = + + + + = b b f b f f F α α α α L 0 + + + = b b b f f f α α α L 0 0 + + + + + = b b b b b b f a a f a a f a a α α α L a α 0 0 + + b b b b b f a a f a a f a L

a α 0 0 + + b b b b b f a a f a a f a L 0 0 0 0 0 0 0 0 0 0 0 b b f f f f a a a L L L L L L L L L L a 0 a b a a L

f f a 0 a a b- f 0 f f f b- M

++ 4 M ++ 4 =++0 +0 +0 3 + 4 a 0 a a a 3 a 0 a a a 3

Mersenne Twiser GF 9937 0 0 = 3... ^9937- ^9937-9937 ^9937-0 3...

M - M 3573793689 0775607790383745 3443 968999439937 993770... 998 37 30377

0 d p = md m = nt n p00= p0=0 0 p+t=/p-d+/p+d

d d d p p d p d p T d T p T p + = + d p p p d p p T p + = +

d d d p p d p d p T d T p T p + = + T d 0 d T p p T d p = 0 p δ =

d d d p p d p d p T d T p T p + = + p md = nt = T d p T d p = 0 p δ =

p T d p = p D p = D > 0 0 p δ = D e D p 4 4 = π

µ σ N µ σ µ σ f = e πσ p = e 4D 4πD D = σ

T d / n + n - nt md pmd nt + n n = + n n + n = m p md nt n n + n n! p md nt = nc + n = + + n! n n! n

n! p md nt n! n n! n n = nc + n = + + n + + n = n n + n = m p md nt = n + n!! n! n = n n! + m n! m! n

3 3 n n n ne n n π! log log! log π + + n n n n n m e n nt md p = π

D e D p 4 4 = π n m e n nt md p = π md = nt = T d D = n m n T d d m e nd e nt T d nt md p 4 4 = = π π

m p md nt = e n πn d m p md nt = e n πnd

3 m p md nt = e n πnd p n m md d md d

-l n l n v h l / l l τc = v h

-l A B l A 0 l n d n τc B n d l 0

3 -l A B l n τ c 0 n d l 0 l n d

4 n -l A n B l 0 n d l 0 l n d / dn d l

5 A B dn d l τ c -l l l dn τ c d l τ c D

6 + n D n D + n D n n n = D +

7 7 + = + n n D n n D n n D n = = +