.I.v e pmd

Similar documents
‰IŠv05„´“ever4.pmd

all.dvi

untitled

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

0801391,繊維学会ファイバ12月号/報文-01-西川

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

untitled

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

mbb mb9 xb Fig. 1 Soil-Structure Interaction System.

impulse_response.dvi

JFE.dvi

Table 1 Table 2

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Fig. 1 Table l l l l l l l l l l l l l l l l l l l l l l l l l l

I

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

技術研究所 研究所報 No.80

鉄鋼協会プレゼン

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Fig. 1 Hammer Two video cameras Object Overview of hammering test (14) (8) T s T s 2

2006 Method for estimation of characteristics of wooden houses using vibration test data

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

dvipsj.4852.dvi

空力騒音シミュレータの開発

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

数学の基礎訓練I


プログラム

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

news

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

013858,繊維学会誌ファイバー1月/報文-02-古金谷

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

untitled

電子部品はんだ接合部の熱疲労寿命解析

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

修士論文

修士論文

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

技術研究報告第26号

r 0 r 45 r 90 F 0 n


1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

n-jas09.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量


浜松医科大学紀要

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

液晶の物理1:連続体理論(弾性,粘性)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

all.dvi

VOL. 34 S-2 CHEMOTH8RAPY 913

untitled

*.....J.....S.q..2013B_....

untitled

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

TOP URL 1

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

24 Depth scaling of binocular stereopsis by observer s own movements

S-5.indd

001

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

J53-01

Journal of Textile Engineering, Vol.53, No.5, pp

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


Note.tex 2008/09/19( )

28 Horizontal angle correction using straight line detection in an equirectangular image

PRODUCT INFORMATION Highly Efficient FXS Carbide Ball Nose End Mills Vol. 3 PAT.P. FXS-EBT FXS-LS-EBT FXS-PC-EBT FXS-EBM

kiyo5_1-masuzawa.indd

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe


x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

総研大恒星進化概要.dvi

Template For The Preparation Of Papers For On-Line Publishing In JSME

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

SICE東北支部研究集会資料(2012年)

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Gmech08.dvi

udc-2.dvi

LD

untitled

SO(2)

Transcription:

Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing method, the identification study for the laminated composite curved panels are examined for the purpose of weight saving structural design. The vibration modes are largely changed as the aspect ratio, curvature and stacking sequences of laminated curved panels. For example, natural frequencies and modal patterns of automobile door panels are examined using modal testing and Ritz s vibration analysis. As the result, identified stacking sequence of angle-ply three layered laminated composite panels was [-/-3/-4] for simply supported condition. This report presents a new tailored design method using FRP materials instead of steel materials to achieve desired strength and stiffness. Key Word: Modal Testing, Ritz s Method, Composite Materials, Structural Design Latch Ry b Door Knob h Test Piece (Door Panel) a Hinge Press Line Fig.1 Experimental unit PC (Modal Analysis Soft) Impulse Hammer Acceleration Pickup Charge Amp & FFT Analyzer Fig. Door panel (Type-A)

Type-A Fig.3 Test object Type-B Table1 Natural frequency [Hz] f 1 f f 3 Y X Type-A Type-B Fig.4 Frequency responses peak node oor knob & press line [Unit:mm] :peak node door knob & press line peak node door knob & press line Y 3rd X :peak node door knob & press line [Unit:mm] peak node door knob & press line peak node door knob & press line Type-A Type-B Fig. Mode shape for fundamental three modes σx Q11 Q1 Q ε 16 x σ = Q Q ε y 6 y τ xy symm. Q γ 66 xy Q ij Middle surface Fiber orientation Fig.6 Analytical model for laminated curved composite panels Laminae

(,, ) w xyt u = u ( xyt,, ) z, x 1 w( xyt,, ) v= v ( x, yt, ) z, w= w,, Ry x ( xyt) () ε κ u u w εx = = z = ε, x + zκy x x x u v w w εy = = z + = ε, y + zκy y x y Ry γ = + = = γ + κ y x y x x y u v u v w xy + z xy z xy U V W u ( x, y) = a φ ( x, y) i= j= n n v ( x, y) = b φ ( x, y) n n w ( x, y) = c φ ( x, y) ij ij ij ij i= j= n n ij ij i= j=,, (4) i j a ij b ij c ij n φ ij Tmax Umax L L=Tmax-Umax () L L L,, =,, a b c (6) ij ij ij K λm = ; λ = ω (7) K M ω (3) Table Convergence study for various boundary conditions B.C. f 1 f f 3 f 4 f FFFF SFFF CFFF SFSF CFSF CFCF a/h 1.66 (1.67).917 (.933).6 (.643).467 (.463) 1.6 (.97) 1.91 (1.34).91 (.69). (.767) 1.439 (1.463) 1.844 (1.881).43 (.69) 3.4 (3.17) 3.77 (3.84) 3.9 (3.47) 3.18 (3.19) 3.937 (3.98).648 (.88).6 (.774).19 (.9) 4.6 (.) 4. (4.8) 4.671 (4.794) 7.949 (7.8) 6.78 (6.8).19 (.16).89 (6.1).668 (.71) 6.834 (6.9) 9.37 (9.36) 8.9 (9.1) Table 3 Convergence study for various stack sequences 1 a /Ry [ /9/9/] [ /9] [9/] inf..1.. inf..1.. 1.6 (1.39) 13.96 (14.7) 18.9 (18.19) 3.17 (9.6) 11.9 (1.39) 11.97 (1.4) 1.17 (1.6) 13.48 (13.9) 8.7 (8.71) 1.86 (1.97) 1.8 (1.9) 8.4 (8.1) 8. (8.69) 8.66 (8.78) 8.97 (9.6) 1.79 (1.78) 8.6 (8.77) 1.86 (1.97) 1.83 (1.93) 7.8 (8.63) 8.6 (8.69) 8.64 (8.81) 8.9 (9.1) 1.67 (1.9) Ω=ω ρe 1 h ρ E 1

3rd Ω Ω 3rd Ω Ω 3 3 a/b=. a/b=. (,1) (,) (1,) (,) 1 (,1) 1 1 (,1) 1 (,1) a/b=1. a/b=1. 3 4 6 9 3 4 6 9 3 3 (1,1) (1,) a/b=. a/b=. 1 a/b=1. 1 a/b=1. 1 1 3 4 6 9 3 4 6 9 Fig.7 Natural frequency for single layered flat panels 3 (1,) 1 (,1) (,1) 1 (,1) (,1) (,1) a/b=1. 3 4 6 9 3 1 1 a/b=. 3 4 6 9 4th Ω Ω 4th Ω 3 (1,1) a/b=. (1,) a/b=. a/b=1. 1 (,1) a/b=1. Ω 3 a/b=. (,3) (,) (,1) (,) 1 1 (,1) (,1) a/b=1. 3 4 6 9 1 3 4 6 9 Fig.8 Natural frequency for three layered flat panels ([/-/],)

(1,) (,1) (1,) (1,1) a/b a/b a/b 3. 1. 1..1..3.4. 3rd b/ry 3. 1. 1..1..3.4. b/ry 3. 1. 1..1..3.4. b/ry (,1) (1,1) (1,) Fig.9 Mode patterns of single layered curved panels (b/h=1,=) ρ( kg/ m 3 ) Table4 Parameter of door panel of Type-A a(m) b(m) t(m) Ry(m) 78 1.76.686.6* 1.8 [ 1 / / 3 ] 1 3 1 3 1 3

Ω:3.9 [//9] 9.4 [/3/9] 9.7 [/4/9] 9.4 [/6/9] 9.4 [/9/9] (148Hz) (788Hz) 3rd (131Hz) Experimental result by modal test Ω:3.13 [/9/] 3.1 [/9/3] 3.3 [/9/4].99 [/9/6] 3.9 [/9/9] Fig.1 Mode shape and Ω of square panels (a/b=1) (114Hz) (33Hz) 3rd(4Hz) Analytical result by Rit s method ([-/-3/-4]) Fig.13 Compare for experimental result and analytical solution Ω:1.89 [//9] Ω:4.4 [//9] Ω:97.3 [//-9] Ω:8.73 [/9/] 1.93 [/3/9] 4.364 [/3/9] 111.91 [/-3/9] 6.8 [/9/3] 1.9 [/4/9] 4.4 [/4/9] 1.8 [/-4/9].99 [/9/-4] 1.87 [/6/9] 4.8 [/6/9] 8.7 [/-6/9].89 [/9/-6] Fig.1 Mode shape and Ω of curved panels (a/b=1.6, b/ry=.64) 1.76 [/9/9] 6.6 [/9/9] Fig.11 Mode shape and Ω of rectangular panels () 9.44 [/9/9] 78.3 [/9/9] 1 3 (7), 314-31. 4, (7), 7-1. M.S.Qatau, Vibration of Laminated Shells and Plates, Elsevier Academic Press, (4). (7),