原稿.indd

Similar documents
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

kiyo5_1-masuzawa.indd

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

™…

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

16_.....E...._.I.v2006

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2


Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

<836F F312E706466>

06’ÓŠ¹/ŒØŒì

Therapy for Asthenopia in Cases of Convergence Insufficiency Hiroko TAKASAKI, C.O.J., Nobuko INAGAMI, C.O.J., and Kayoko TAKENAWA, C.O.J.. Orthoptic c

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

抜刷表紙/芦塚 〃 嶋崎 芦塚

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l


2 1 ( ) 2 ( ) i

FIG 7 5) 7 FIG ) 7) 8) 9) 10) 11) 12) 3 18 Gymnastik 13) 1793 J. Ch. F. Guts Muths Gymnastik fuer die Juegend 1816 F. L. Jahn Turnkunst Rhythm

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

udc-2.dvi

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4


大学における原価計算教育の現状と課題

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

29 jjencode JavaScript

27 VR Effects of the position of viewpoint on self body in VR environment

施 ほか/3-18

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

<95DB8C9288E397C389C88A E696E6462>

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

<8B5A8F70985F95B632936EE7B22E696E6464>

(2) IPP Independent Power Producers IPP 1995 NCC(New Common Carrier NCC NTT NTT NCC NTT NTT IPP 2. IPP (3) [1] [2] IPP [2] IPP IPP [1] [2]

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

yasi10.dvi


1..FEM FEM 3. 4.

24 Depth scaling of binocular stereopsis by observer s own movements

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

11_土居美有紀_様.indd


評論・社会科学 84号(よこ)(P)/3.金子

IT i

2 ( ) i

04_学術.indd


日本感性工学会論文誌

01-加藤 実-5.02

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy


Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

52-2.indb

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Tab 5, 11 Tab 4, 10, Tab 3, 9, 15Tab 2, 8, 14 Tab 1, 7, 13 2

橡最終原稿.PDF

GPGPU

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

soturon.dvi

25 Removal of the fricative sounds that occur in the electronic stethoscope

13....*PDF.p

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

untitled

2017 (413812)

untitled

植物23巻2号

„h‹¤.05.07

先端社会研究 ★5★号/4.山崎

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2017-CG-166 No /3/ HUNTEXHUNTER1 NARUTO44 Dr.SLUMP1,,, Jito Hiroki Satoru MORITA The

untitled

DI DI

*.E (..).R

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

06_仲野恵美.indd

MRI | 所報 | 分権経営の進展下におけるグループ・マネジメント


04-“²†XŒØ‘�“_-6.01

X線分析の進歩36 別刷

テレビ番組による相互交流


Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

process of understanding everyday language is similar, finally as far as word production is concerned, individual variations seem to be greater at an

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

04長谷川英伸_様.indd

パナソニック技報

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-


2 122

Transcription:

OTEC 18(2013),5968 小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 59 *1 *1 *2 Studies on the floating body shape to maximize the kinetic energy that are intended to be small wave power generator Shunya NISHIZAWA *1, Naoki OKADA *1 and Motohiko MURAI *2 *1*2 Yokohama National University,79-7 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa, Japan In late years, the action for the environmental problem becomes more and more active in the world. The country like Japan, being surrounded by the sea, is rich in ocean energy. It is relatively easy to get wave energy among ocean renewable energies. The wave power generation device to collect wave energy has been studied in many countries of the world including Japan. However, these studies have focused to make or improve the method of power generation and have not thought about the motion of the floating body. By working out a floating body which has higher kinetic energy than before, it is possible to increase the power generation efficiency of wave power. In this study we check how the center of gravity position and the shape whose affect the motion of the floating body in waves and aim to improve the efficiency of the power generation using the piezoelectric element and pendulums. Key Words : wave power generation, floating body, shape, piezoelectric element 1 2 6 HeaveRollPitch * 2013 07 31 *1 *2 E-mail: m-murai@ynu.ac.jp

60 西澤峻也, 岡田尚樹, 村井基彦 21 Fig.1 x y b/2 Incident wave Aft side Fore side x Center of d buoyancy L z Fig.1 Coordinate system 2) 6 Pitch L 2 Evaluation value 2 X 5 k d (1) L 22 xz xz Fig.1 2 1 Fig.2 Fig.2 Floating shapes defined by trigonometric function GM

小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 61 L OG OB κ y G ratio OG / OB [%] (2) c / L [%] (3) 23 Fig28 Fig.3 Gratio 100 [%] c 30 [%] 88 D-A E-A A-E B-E C-A F-A G-A H-E A B C D E F G H Fig.3 Evaluations of floating bodies defined by trigonometric function 3 "E-A A-E E-D 1~3 RAOPitch Fig.4 E-A 1 A-E 2 E=A E-D 3 Box Fig.4 Response Amplitude Operators of the E-A A-E and E-D

62 西澤峻也, 岡田尚樹, 村井基彦 3 31 1 (2) (3) 1.0[cm]0.6[s]4.0[s] 0.70[s]0.85[s] 1.0[cm] 2.0[cm] 32 18 0.85 0.90[m] Heave Pitch 3 Fig.5 Tracking marker Wave gauges 33 Fig.5 Arrangement of the experiment 3 (Fig.68) 1 2 3 Table.1 Fig.6 Spacifications and picture of the floating body1 (E-A) Fig.7 Spacifications and picture of the floating body2 (A-E)

小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 63 Table 1 Principal particulars of the florting bodies Fig.8 Spacifications and picture of the floating body3 (E-D) 34 2011 Fig.9 Piezo film Bimorph module Piezo ceramic Circular type of piezoelectric element Fig.9 Variety of piezoelectric elements Fig.9 FRP Fig.10 Fig.12 2 2 Fig.12 P1 P2 Fig.10 View and circuit diagram of a bimorph module Fig.11 Picture of the pendulum

64 西澤峻也, 岡田尚樹, 村井基彦 Fig.12 Picture of the pendulum on the floating body 35 1 Fig.13 Pitch ( L 40 ) 3 Fig.13 View of the floating body3 in the waves Table.2 G ratio c 3 Fig.14~16 3 RAO (PitchHeave) Fig17 (Pitch) L Pitch Heave Fig.14~16 Heave 3 Pitch L 20 3 3 Fig.17 90 Body3 L 40

小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 65 1.0 3 2 3 3 Table 2 Principal particulars of the florting bodies κ Fig.14 Response Amplitude Operators of the floating body1 Fig.15 Response Amplitude Operators of the floating body2 Fig.16 Response Amplitude Operators of the floating body3 Fig.17 Phase difference of the floating body1,2 and 3 (2) 3 Table.3 Body1 Table 3 Principal particulars of the florting bodies κ Table.3 Case1 Case3 Fig.18~20 Case1~3 3 RAO(PitchHeave)Pitch) Fig.21

66 西澤峻也, 岡田尚樹, 村井基彦 Fig.18 Response Amplitude Operators of the Case1 Fig.19 Response Amplitude Operators of the Case2 Fig.20 Response Amplitude Operators of the Case3 Fig.21 Phase difference of the Case1 2 and 3 Fig.18~20 Case1~3 Heave Pitch Pitch L 20 L 50 Case 1~3 G ratio c Case 1 Case 2 Case 2 Case 3 RAO Case 1 Case2 Case3 Case 1 Case2 Case3 Fig.21 Case 1Case2 Case3 (1) (3) Body1Case3 0.70[s]0.85[s] 1.0[cm] 2.0[cm] Body1Case3 1.0[m] 1.0[s] Fig.21 WH P1P2 Fig.22

小型の波浪発電を想定した浮体運動の最大化を目的とした浮体形状に関する研究 67 Fig.22 magnitude of the voltage Fig.23 Comparison with experiment (PITCH) Fig.23 Fig.23 10[mm] 20[mm] 2 PITCH PITCH P2 0.8[s] 1 9.0[mm] 1.0[s] H S 1 E w ghs (4) 8 E P C[F] 1 E 2 p CV (5) 2 E p (6) Ew 0.8[s] 0.00524% 2011 1.3[s] 0.0186% 1

68 西澤峻也, 岡田尚樹, 村井基彦 5 1) Pitch 1 3 GA (1) 15 2012 pp.359-362 (2) 2003pp.99-196 (3) OES23-051 2012 23 (4) OTEC: 17